Zhi-Xiang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515.	5.8	1,431
2	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	11.1	1,407
3	Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano, 2010, 4, 5019-5026.	7.3	1,287
4	Singleâ€Junction Organic Photovoltaic Cell with 19% Efficiency. Advanced Materials, 2021, 33, e2102420.	11.1	1,072
5	Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small, 2014, 10, 14-31.	5.2	685
6	Allâ€Polymer Solar Cells Based on Absorptionâ€Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials, 2016, 28, 1884-1890.	11.1	670
7	A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9, 743.	5.8	635
8	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	11.1	629
9	Nanostructures of Polyaniline Doped with Inorganic Acids. Macromolecules, 2002, 35, 5937-5942.	2.2	594
10	Highâ€Performance Twoâ€Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays. Advanced Materials, 2013, 25, 1494-1498.	11.1	555
11	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	5.8	549
12	Conjugated Polymer–Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 8176-8183.	6.6	518
13	Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes. Langmuir, 2002, 18, 917-921.	1.6	499
14	Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. Journal of Physical Chemistry C, 2010, 114, 8062-8067.	1.5	497
15	Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors. Advanced Materials, 2013, 25, 6985-6990.	11.1	472
16	Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design. Advanced Materials, 2019, 31, e1808356.	11.1	388
17	Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Advanced Materials, 2015, 27, 7451-7457.	11.1	386
18	Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Advanced Materials, 2022, 34, .	11.1	384

#	Article	IF	CITATIONS
19	Conducting polymer nanostructures and their application in biosensors. Journal of Colloid and Interface Science, 2010, 341, 1-11.	5.0	366
20	Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents. ACS Applied Materials & Interfaces, 2015, 7, 1431-1438.	4.0	364
21	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
22	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
28	Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy and Environmental Science, 2012, 5, 8384.	15.6	352
24	An Allâ€Solidâ€State Flexible Microâ€supercapacitor on a Chip. Advanced Energy Materials, 2011, 1, 1068-107	72. 10.2	344
28	All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nature Communications, 2019, 10, 5393.	5.8	273
20	Largeâ€Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Advanced Materials, 2019, 31, e1805089.	11.1	246
27	Benzotriazole-Based Acceptor and Donors, Coupled with Chlorination, Achieve a High <i>V</i> _{OC} of 1.24 V and an Efficiency of 10.5% in Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2019, 31, 3941-3947.	3.2	236
28	Highâ€Performance As ast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2018, 30, 1704546.	11.1	233
29	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	7.2	232
3(Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles. ACS Nano, 2014, 8, 4571-4579.	7.3	228
31	Highâ€Performance Allâ€Carbon Yarn Microâ€Supercapacitor for an Integrated Energy System. Advanced Materials, 2014, 26, 4100-4106.	11.1	223
32	Volatilizable Solid Additiveâ€Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Advanced Materials, 2021, 33, e2105301.	11.1	222
33	Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. Journal of Materials Chemistry, 2011, 21, 16373.	6.7	202
34	Flexible and Binderâ€Free Organic Cathode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 3338-3343.	11.1	200
38	An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 6366.	5.2	197
30	Synergistic Effect of Polymer and Small Molecules for Highâ€Performance Ternary Organic Solar Cells. Advanced Materials, 2015, 27, 1071-1076.	11.1	192

#	Article	IF	CITATIONS
37	Achievement of High <i>V</i> _{oc} of 1.02 V for P3HTâ€Based Organic Solar Cell Using a Benzotriazoleâ€Containing Nonâ€Fullerene Acceptor. Advanced Energy Materials, 2017, 7, 1602269.	10.2	191
38	Conducting polymernanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 2010, 20, 1117-1121.	6.7	189
39	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	7.8	180
40	Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Science China Chemistry, 2018, 61, 1328-1337.	4.2	177
41	Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700535.	10.2	170
42	Supramolecular Helices: Chirality Transfer from Conjugated Molecules to Structures. Advanced Materials, 2013, 25, 6039-6049.	11.1	158
43	Modulating Molecular Orientation Enables Efficient Nonfullerene Small-Molecule Organic Solar Cells. Chemistry of Materials, 2018, 30, 2129-2134.	3.2	157
44	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	11.1	155
45	Flexible high performance wet-spun graphene fiber supercapacitors. RSC Advances, 2013, 3, 23957.	1.7	152
46	Largeâ€Area Polyimide/SWCNT Nanocable Cathode for Flexible Lithiumâ€Ion Batteries. Advanced Materials, 2015, 27, 6504-6510.	11.1	150
47	Threadâ€like Supercapacitors Based on Oneâ€Step Spun Nanocomposite Yarns. Small, 2014, 10, 3187-3193.	5.2	146
48	From Alloy-Like to Cascade Blended Structure: Designing High-Performance All-Small-Molecule Ternary Solar Cells. Journal of the American Chemical Society, 2018, 140, 1549-1556.	6.6	145
49	Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Lowâ€Bandâ€Gap Polymer with Fineâ€Tuned Properties. Advanced Materials, 2016, 28, 5133-5138.	11.1	144
50	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie - International Edition, 2016, 55, 2411-2415.	7.2	140
51	Aniline Oligomers – Architecture, Function and New Opportunities for Nanostructured Materials. Macromolecular Rapid Communications, 2008, 29, 280-292.	2.0	139
52	Toward Over 15% Power Conversion Efficiency for Organic Solar Cells: Current Status and Perspectives. Small Methods, 2017, 1, 1700258.	4.6	130
53	A New Conjugated Polymer that Enables the Integration of Photovoltaic and Lightâ€Emitting Functions in One Device. Advanced Materials, 2021, 33, e2101090.	11.1	129
54	A Carbonyl Compoundâ€Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithiumâ€Ion Batteries. Advanced Materials, 2018, 30, 1703868.	11.1	128

#	Article	IF	CITATIONS
55	The Introduction of Fluorine and Sulfur Atoms into Benzotriazoleâ€Based pâ€Type Polymers to Match with a Benzotriazoleâ€Containing nâ€Type Small Molecule: "The Sameâ€Acceptorâ€Strategy―to Realize I Openâ€Circuit Voltage. Advanced Energy Materials, 2018, 8, 1801582.	High10.2	122
56	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 15348-15353.	7.2	121
57	A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10842-10846.	5.2	120
58	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
59	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	15.6	116
60	Enhancing Performance of Largeâ€Area Organic Solar Cells with Thick Film via Ternary Strategy. Small, 2017, 13, 1700388.	5.2	113
61	Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nature Communications, 2022, 13, .	5.8	113
62	Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Materialia, 2005, 53, 1373-1379.	3.8	112
63	Modulating helicity through amphiphilicity—tuning supramolecular interactions for the controlled assembly of perylenes. Chemical Communications, 2011, 47, 5554-5556.	2.2	112
64	Polymer/Small Molecule/Fullerene Based Ternary Solar Cells. Advanced Energy Materials, 2017, 7, 1602540.	10.2	111
65	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	8.2	110
66	Selfâ€Assembled Sugarâ€6ubstituted Perylene Diimide Nanostructures with Homochirality and High Gas Sensitivity. Advanced Functional Materials, 2012, 22, 4149-4158.	7.8	107
67	Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Materials and Design, 2017, 129, 164-172.	3.3	105
68	Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602552.	10.2	97
69	A Fused Ring Electron Acceptor with Decacyclic Core Enables over 13.5% Efficiency for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1802050.	10.2	97
70	Efficient Two-Dimensional Tin Halide Perovskite Light-Emitting Diodes via a Spacer Cation Substitution Strategy. Journal of Physical Chemistry Letters, 2020, 11, 1120-1127.	2.1	97
71	Helical supramolecular aggregates, mesoscopic organisation and nanofibers of a perylenebisimide–chiral surfactant complex via ionic self-assembly. Journal of Materials Chemistry, 2009, 19, 2356.	6.7	96
72	Exciton Binding Energies of Nonfullerene Small Molecule Acceptors: Implication for Exciton Dissociation Driving Forces in Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 22309-22316.	1.5	93

#	Article	IF	CITATIONS
73	Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. Journal of Materials Chemistry, 2008, 18, 2276.	6.7	92
74	Synergistic Optimization Enables Largeâ€Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Smallâ€Area Rigid Devices. Advanced Materials, 2020, 32, e2005153.	11.1	89
75	Recent Progress in Polymeric Carbonylâ€Based Electrode Materials for Lithium and Sodium Ion Batteries. Macromolecular Rapid Communications, 2019, 40, e1800565.	2.0	88
76	Acceptor Endâ€Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2016, 28, 5980-5985.	11.1	87
77	Improve the Performance of the Allâ€Smallâ€Molecule Nonfullerene Organic Solar Cells through Enhancing the Crystallinity of Acceptors. Advanced Energy Materials, 2018, 8, 1702377.	10.2	87
78	Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18889-18897.	5.2	87
79	Regulating Bulkâ€Heterojunction Molecular Orientations through Surface Free Energy Control of Holeâ€Transporting Layers for Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1806921.	11.1	86
80	Simple Nonfusedâ€Ring Electron Acceptors with Noncovalently Conformational Locks for Lowâ€Cost and Highâ€Performance Organic Solar Cells Enabled by Endâ€Group Engineering. Advanced Functional Materials, 2022, 32, 2108861.	7.8	84
81	Molecular Engineering of Dâ~ï€â€"A Copolymers Based on 4,8-Bis(4-chlorothiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene (BDT-T-Cl) for High-Performance Fullerene-Free Organic Solar Cells. Macromolecules, 2019, 52, 6227-6233.	2.2	83
82	Self-Assembly and Electrical Conductivity Transitions in Conjugated Oligoaniline-Surfactant Complexes. Angewandte Chemie - International Edition, 2005, 44, 751-756.	7.2	81
83	An Efficiency of 16.46% and a <i>T</i> ₈₀ Lifetime of Over 4000 h for the PM6:Y6 Inverted Organic Solar Cells Enabled by Surface Acid Treatment of the Zinc Oxide Electron Transporting Layer. ACS Applied Materials & Interfaces, 2021, 13, 17869-17881.	4.0	80
84	Effects of Shortened Alkyl Chains on Solutionâ€Processable Small Molecules with Oxoâ€Alkylated Nitrile Endâ€Capped Acceptors for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400538.	10.2	79
85	Optimized "Alloyâ€Parallel―Morphology of Ternary Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502456.	10.2	79
86	Highly efficient flexible MAPbI ₃ solar cells with a fullerene derivative-modified SnO ₂ layer as the electron transport layer. Journal of Materials Chemistry A, 2019, 7, 6659-6664.	5.2	77
87	PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure. Journal of Materials Chemistry A, 2016, 4, 1708-1713.	5.2	75
88	A universal method for constructing high efficiency organic solar cells with stacked structures. Energy and Environmental Science, 2021, 14, 2314-2321.	15.6	75
89	Biomimetic Superhelical Conducting Microfibers with Homochirality for Enantioselective Sensing. Journal of the American Chemical Society, 2014, 136, 578-581.	6.6	74
90	Oligomeric Donor Material for Highâ€Efficiency Organic Solar Cells: Breaking Down a Polymer. Advanced Materials, 2015, 27, 4229-4233.	11.1	74

#	Article	IF	CITATIONS
91	High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in All‧mallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, e2106316.	11.1	74
92	The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′D–A type acceptors. Energy and Environmental Science, 2022, 15, 2011-2020.	15.6	73
93	Molecular imprinted polypyrrole nanowires for chiral amino acid recognition. Sensors and Actuators B: Chemical, 2008, 134, 573-578.	4.0	72
94	A–Ĩ€â€"D–Ĩ€â€"A Electronâ€Donating Small Molecules for Solutionâ€Processed Organic Solar Cells: A Review Macromolecular Rapid Communications, 2017, 38, 1700470.	^{/.} 2.0	70
95	Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8, nwab031.	4.6	70
96	Selfâ€Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Advanced Functional Materials, 2021, 31, 2106326.	7.8	70
97	Hexagonal Superlattice of Chiral Conducting Polymers Self-Assembled by Mimicking β-Sheet Proteins with Anisotropic Electrical Transport. Journal of the American Chemical Society, 2010, 132, 12006-12012.	6.6	67
98	Ammonia Sensory Properties Based on Single-Crystalline Micro/Nanostructures of Perylenediimide Derivatives: Core-Substituted Effect. Journal of Physical Chemistry C, 2011, 115, 10399-10404.	1.5	67
99	"Nâ€ <i>Ï€</i> â€N―Type Oligomeric Acceptor Achieves an OPV Efficiency of 18.19% with Low Energy Loss ar Excellent Stability. Advanced Science, 2022, 9, .	id 5.6	67
100	Decorating Polypyrrole Nanotubes with Au Nanoparticles by an In Situ Reduction Process. Macromolecular Rapid Communications, 2009, 30, 936-940.	2.0	66
101	Self-Assembled Organic Functional Nanotubes and Nanorods and Their Sensory Properties. Journal of Physical Chemistry C, 2009, 113, 3929-3933.	1.5	66
102	Metal–Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43171-43178.	4.0	66
103	Tuning the Supramolecular Chirality of Polyaniline by Methyl Substitution. Angewandte Chemie - International Edition, 2009, 48, 2003-2006.	7.2	64
104	Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Twoâ€Step CH Activation Strategy. Advanced Materials, 2019, 31, e1806010.	11.1	63
105	Controllable Supramolecular Chiral Twisted Nanoribbons from Achiral Conjugated Oligoaniline Derivatives. Journal of the American Chemical Society, 2018, 140, 9417-9425.	6.6	62
106	Gamma-Irradiated Carbon Nanotube Yarn As Substrate for High-Performance Fiber Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 2553-2560.	4.0	61
107	Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing. Journal of Physical Chemistry Letters, 2019, 10, 4888-4894.	2.1	60
108	Facile-Effective Hole-Transporting Materials Based on Dibenzo[<i>a</i> , <i>c</i>]carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2514-2521.	8.8	59

#	Article	IF	CITATIONS
109	Asymmetric Substitution of Endâ€Groups Triggers 16.34% Efficiency for Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	59
110	Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. Journal of Materials Chemistry A, 2019, 7, 3570-3576.	5.2	58
111	Enhancing the Photovoltaic Performance via Vertical Phase Distribution Optimization in Small Molecule:PC ₇₁ BM Blends. Advanced Energy Materials, 2017, 7, 1701548.	10.2	57
112	Spontaneous open-circuit voltage gain of fully fabricated organic solar cells caused by elimination of interfacial energy disorder. Energy and Environmental Science, 2019, 12, 2518-2528.	15.6	57
113	Scalable Production of Wearable Solid‧tate Liâ€ion Capacitors from Nâ€Doped Hierarchical Carbon. Advanced Materials, 2020, 32, e2005531.	11.1	57
114	Liquidâ€Crystalline Small Molecules for Nonfullerene Solar Cells with High Fill Factors and Power Conversion Efficiencies. Advanced Energy Materials, 2019, 9, 1803175.	10.2	55
115	Stepwise Selfâ€Assembly of P3HT/CdSe Hybrid Nanowires with Enhanced Photoconductivity. Macromolecular Rapid Communications, 2009, 30, 1419-1423.	2.0	54
116	Moving Alkylâ€Chain Branching Point Induced a Hierarchical Morphology for Efficient Allâ€&mallâ€Molecule Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2005426.	7.8	54
117	Progress and prospects of thick-film organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3125-3150.	5.2	53
118	Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy, 2019, 58, 706-714.	8.2	52
119	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.	2.7	51
120	Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene-Based Small Molecules for Thick-Film Organic Solar Cells with High Fill Factors. Chemistry of Materials, 2016, 28, 943-950.	3.2	50
121	Nitrogenâ€doped nanoarrayâ€modified 3D hierarchical graphene as a cofunction host for highâ€performance flexible Liâ€S battery. EcoMat, 2020, 2, e12010.	6.8	50
122	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	5.2	49
123	Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules. Nano Energy, 2020, 68, 104271.	8.2	47
124	18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021, 41, 101289.	6.2	47
125	Synthesis and characterization of self-doped poly(aniline-co-aminonaphthalene sulfonic acid) nanotubes. Journal of Applied Polymer Science, 2003, 87, 1297-1301.	1.3	46
126	A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Advances, 2016, 6, 33287-33294.	1.7	46

#	Article	IF	CITATIONS
127	Nitrogen-Doped Porous Carbons Derived from Polypyrrole-Based Aerogels for Gas Uptake and Supercapacitors. ACS Applied Nano Materials, 2018, 1, 609-616.	2.4	46
128	Naphtho[1,2-b:5,6-bâ€2]dithiophene Based Two-Dimensional Conjugated Polymers for Highly Efficient Thick-Film Inverted Polymer Solar Cells. Chemistry of Materials, 2014, 26, 6947-6954.	3.2	45
129	18.55% Efficiency Polymer Solar Cells Based on a Small Molecule Acceptor with Alkylthienyl Outer Side Chains and a Low-Cost Polymer Donor PTQ10. CCS Chemistry, 2023, 5, 841-850.	4.6	45
130	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	5.6	43
131	Nonâ€Fullerene Acceptors With A ₂ = A ₁ â€Dâ€A ₁ = A< Containing Benzothiadiazole and Thiazolidineâ€2,4â€Dione for Highâ€Performance P3HTâ€Based Organic Solar Cells. Solar Rrl, 2017, 1, 1700166.	sub>23.1	1b> Skeleton 43
132	Correlations between Performance of Organic Solar Cells and Filmâ€Depthâ€Dependent Optical and Electronic Variations. Advanced Optical Materials, 2019, 7, 1900152.	3.6	43
133	Flexible Short-Wave Infrared Image Sensors Enabled by High-Performance Polymeric Photodetectors. Macromolecules, 2020, 53, 10636-10643.	2.2	42
134	Theoryâ€Guided Material Design Enabling Highâ€Performance Multifunctional Semitransparent Organic Photovoltaics without Optical Modulations. Advanced Materials, 2022, 34, e2200337.	11.1	42
135	Surface modification of ZnO electron transport layers with glycine for efficient inverted non-fullerene polymer solar cells. Organic Electronics, 2019, 70, 25-31.	1.4	41
136	Conducting Polymer Nanostructures and their Derivatives for Flexible Supercapacitors. Israel Journal of Chemistry, 2018, 58, 1299-1314.	1.0	40
137	Modulation of Donor Alkyl Terminal Chains with the Shifting Branching Point Leads to the Optimized Morphology and Efficient All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25100-25107.	4.0	40
138	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie, 2016, 128, 2457-2461.	1.6	39
139	A Hierarchically Porous Hypercrosslinked and Novel Quinone based Stable Organic Polymer Electrode for Lithium-Ion Batteries. Electrochimica Acta, 2017, 255, 145-152.	2.6	39
140	Monodispersed ZnSe Colloidal Microspheres:  Preparation, Characterization, and Their 2D Arrays. Langmuir, 2007, 23, 9008-9013.	1.6	38
141	Probing the Sensory Property of Perylenediimide Derivatives in Hydrazine Gas: Core-Substituted Aromatic Group Effect. ACS Applied Materials & Interfaces, 2014, 6, 9307-9313.	4.0	38
142	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	5.2	38
143	Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter, 2022, 5, 1877-1889.	5.0	38
144	A conformational locking strategy in linked-acceptor type polymers for organic solar cells. Polymer Chemistry, 2016, 7, 1323-1329.	1.9	37

#	Article	IF	CITATIONS
145	Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with small energy loss. Journal of Materials Chemistry A, 2017, 5, 16573-16579.	5.2	37
146	Two-dimensional benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran-based wide bandgap conjugated polymers for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4023-4031.	5.2	37
147	Constructing Highâ€Performance Allâ€Smallâ€Molecule Ternary Solar Cells with the Same Third Component but Different Mechanisms for Fullerene and Nonâ€fullerene Systems. Advanced Energy Materials, 2019, 9, 1900190.	10.2	37
148	A Sequential Slotâ€Die Coated Ternary System Enables Efficient Flexible Organic Solar Cells. Solar Rrl, 2019, 3, 1800333.	3.1	37
149	Modulating supramolecular helicity and electrical conductivity of perylene dyes through an achiral alkyl chain. Chemical Communications, 2014, 50, 8343.	2.2	36
150	Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chemistry of Materials, 2020, 32, 1993-2003.	3.2	36
151	A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo[1,2-b:4,5-b′]dithiophene and thieno[3,4-c]pyrrole-4,6-dione polymers via subtle chemical structure variations. Organic Electronics, 2013, 14, 2652-2661.	1.4	35
152	Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustainable Energy and Fuels, 2020, 4, 324-330.	2.5	35
153	Self-assembly of two-dimensional nanostructures of linear regioregular poly(3-hexylthiophene). RSC Advances, 2012, 2, 338-343.	1.7	34
154	Selfâ€Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties. Macromolecular Rapid Communications, 2018, 39, 1700591.	2.0	34
155	Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nature Communications, 2018, 9, 3808.	5.8	34
156	Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells. Science China Chemistry, 2021, 64, 116-126.	4.2	34
157	Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. Polymer Chemistry, 2017, 8, 5603-5610.	1.9	33
158	Simultaneously Decreasing the Bandgap and V _{oc} Loss in Efficient Ternary Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	33
159	Regulating phase separation and molecular stacking by introducing siloxane to small-molecule donors enables high efficiency all-small-molecule organic solar cells. Energy and Environmental Science, 2022, 15, 2937-2947.	15.6	33
160	Fluorination-substitution effect on all-small-molecule organic solar cells. Science China Chemistry, 2019, 62, 837-844.	4.2	32
161	Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance semitransparent photovoltaics. Nano Energy, 2021, 86, 106098.	8.2	31
162	Evolution of morphology and open-circuit voltage in alloy-energy transfer coexisting ternary organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9859-9866.	5.2	30

#	Article	IF	CITATIONS
163	A hierarchical porous N-doped carbon electrode with superior rate performance and cycling stability for flexible supercapacitors. Materials Chemistry Frontiers, 2018, 2, 986-992.	3.2	30
164	Surface controlled pseudo-capacitive reactions enabling ultra-fast charging and long-life organic lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4179-4185.	2.5	30
165	Combining Electrode Flexibility and Waveâ€Like Device Architecture for Highly Flexible Liâ€lon Batteries. Advanced Materials Technologies, 2017, 2, 1700032.	3.0	29
166	Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method. Applied Physics Letters, 2004, 84, 2205-2207.	1.5	28
167	Electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. Nano Research, 2010, 3, 670-675.	5.8	27
168	Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese Journal of Polymer Science (English Edition), 2017, 35, 261-268.	2.0	27
169	PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy, 2022, 95, 107009.	8.2	27
170	Poly(3,4-ethylenedioxythiophene)-coated sulfur for flexible and binder-free cathodes of lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17647-17652.	5.2	26
171	Modulation of the Molecular Orientation at the Bulk Heterojunction Interface via Tuning the Small Molecular Donor–Nonfullerene Acceptor Interactions. ACS Applied Materials & Interfaces, 2018, 10, 31526-31534.	4.0	26
172	Conducting Polypyrrole Conical Nanocontainers: Formation Mechanism and Voltage Switchable Property. Macromolecular Rapid Communications, 2008, 29, 1335-1340.	2.0	25
173	Effective Modulation of Exciton Binding Energies in Polymorphs of a Small-Molecule Acceptor for Organic Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 10227-10232.	2.1	25
174	Control of Nanomorphology in Fullerene-Free Organic Solar Cells by Lewis Acid Doping with Enhanced Photovoltaic Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 667-677.	4.0	24
175	Vertical few-layer graphene/metalized Si-nanocone arrays as 3D electrodes for solid-state supercapacitors with large areal capacitance and superior rate capability. Applied Surface Science, 2017, 404, 238-245.	3.1	23
176	Wide-Bandgap Conjugated Polymers Based on Alkylthiofuran-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> :â€2]difuran for Efficient Fullerene-Free Polymer Solar Cells. Macromolecules, 2018, 51, 2498-2505.	2.2	23
177	Nanowire Array-Coated Flexible Substrate to Accommodate Lithium Plating for Stable Lithium-Metal Anodes and Flexible Lithium–Organic Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20873-20880.	4.0	23
178	Combining chlorination and sulfuration strategies for high-performance all-small-molecule organic solar cells. Journal of Energy Chemistry, 2021, 52, 228-233.	7.1	23
179	Hierarchical Crystalline Superstructures of Conducting Polymers with Homohelicity. Chemistry - A European Journal, 2010, 16, 8626-8630	1.7	22
180	Patterned Growth of Polyaniline Nanowire Arrays on a Flexible Substrate for Highâ€Performance Gas Sensing. Small, 2011, 7, 3287-3291.	5.2	22

#	Article	IF	CITATIONS
181	Selfâ€Assembly of Graphenelike ZnO Superstructured Nanosheets and Their Application in Hybrid Photoconductors. Small, 2011, 7, 3472-3478.	5.2	22
182	In situ anchoring uniform MnO ₂ nanosheets on three-dimensional macroporous graphene thin-films for supercapacitor electrodes. RSC Advances, 2015, 5, 90307-90312.	1.7	22
183	Ï€-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS Applied Materials & Interfaces, 2021, 13, 22531-22539.	4.0	22
184	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie, 2021, 133, 15476-15481.	1.6	22
185	Building Supramolecular Chirality in Bulk Heterojunctions Enables Amplified Dissymmetry Current for High-Performing Circularly Polarized Light Detection. , 2022, 4, 401-409.		22
186	Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells. Science China Chemistry, 2022, 65, 926-933.	4.2	22
187	Selfâ€Assembled Singleâ€Crystal Polyaniline Microplates and Their Anisotropic Electrical Transport Property. Macromolecular Rapid Communications, 2011, 32, 1640-1644.	2.0	21
188	Effects of end-capped acceptors subject to subtle structural changes on solution-processable small molecules for organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 8894-8900.	1.3	21
189	Twisted terrylene dyes: synthesis and application in organic solar cells. Organic Chemistry Frontiers, 2017, 4, 811-816.	2.3	21
190	Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 12913-12920.	4.0	21
191	A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21790-21797.	2.8	21
192	A Bifunctional and Freeâ€Standing Organic Composite Film with High Flexibility and Good Tensile Strength for Tribological and Electrochemical Applications. Advanced Materials Technologies, 2019, 4, 1900617.	3.0	21
193	Ternary Organic Solar Cells Based on Two Nonâ€fullerene Acceptors with Complimentary Absorption and Balanced Crystallinity. Chinese Journal of Chemistry, 2020, 38, 935-940.	2.6	21
194	Enhancing Photovoltaic Performances of Naphthaleneâ€Based Unfusedâ€Ring Electron Acceptors upon Regioisomerization. Solar Rrl, 2021, 5, 2100094.	3.1	21
195	Linkedâ€Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Openâ€Circuit Voltage Exceeding 1 V. Advanced Science, 2015, 2, 1500021.	5.6	20
196	Chalcogen-substitution modulated supramolecular chirality and gas sensing properties in perylenediimides. Chemical Communications, 2019, 55, 4379-4382.	2.2	20
197	Simultaneous performance and stability improvement of polymer:fullerene solar cells by doping with piperazine. Journal of Materials Chemistry A, 2019, 7, 7099-7108.	5.2	20
198	Optimizing the Charge Carrier and Light Management of Nonfullerene Acceptors for Efficient Organic Solar Cells with Small Nonradiative Energy Losses. Solar Rrl, 2021, 5, 2100008.	3.1	20

#	Article	lF	CITATIONS
199	Dual-regulation of ions/electrons in a 3D Cu–Cu _x O host to guide uniform lithium growth for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 10393-10403.	5.2	20
200	Improving the performance of polymer solar cells by altering polymer side chains and optimizing film morphologies. Organic Electronics, 2012, 13, 3234-3243.	1.4	19
201	Small molecules incorporating regioregular oligothiophenes and fluorinated benzothiadiazole groups for solution-processed organic solar cells. Journal of Materials Chemistry C, 2014, 2, 5842-5849.	2.7	19
202	D-A structural protean small molecule donor materials for solution-processed organic solar cells. Chinese Chemical Letters, 2017, 28, 2065-2077.	4.8	19
203	Aromatic end-capped acceptor effects on molecular stacking and the photovoltaic performance of solution-processable small molecules. Journal of Materials Chemistry A, 2018, 6, 22077-22085.	5.2	19
204	Enhancing the photovoltaic performance of heteroheptacene-based nonfullerene acceptors through the synergistic effect of side-chain engineering and fluorination. Journal of Materials Chemistry A, 2020, 8, 24543-24552.	5.2	19
205	Self-Assembling Branched and Hyperbranched Nanostructures of Poly(3-hexylthiophene) by a Solution Process. Journal of Physical Chemistry C, 2011, 115, 3257-3262.	1.5	18
206	A facile strategy to enhance the fill factor of ternary blend solar cells by increasing charge carrier mobility. New Journal of Chemistry, 2013, 37, 1728.	1.4	18
207	High open-circuit voltage ternary organic solar cells based on ICBA as acceptor and absorption-complementary donors. Materials Chemistry Frontiers, 2017, 1, 1223-1228.	3.2	18
208	An Asymmetrical Polymer Based on Thieno[2,3- <i>f</i>]benzofuran for Efficient Fullerene-Free Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 1888-1892.	2.5	18
209	The post-treatment effects on open circuit voltages and device performances in a high efficiency all-small-molecule organic solar cell. Journal of Materials Chemistry C, 2020, 8, 15385-15392.	2.7	18
210	Semitransparent Flexible Organic Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 343-350.	1.3	18
211	Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C, 2020, 8, 10868-10879.	2.7	18
212	100 cm2 Organic Photovoltaic Cells with 23% Efficiency under Indoor Illumination. Chinese Journal of Polymer Science (English Edition), 2022, 40, 979-988.	2.0	18
213	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	3.1	17
214	Helical heterojunctions originating from helical inversion of conducting polymer nanofibers. Chemical Communications, 2012, 48, 2843.	2.2	16
215	The Crystallinity Control of Polymer Donor Materials for High-Performance Organic Solar Cells. Frontiers in Chemistry, 2020, 8, 603134.	1.8	16
216	Exciton Binding Energies in Organic Photovoltaic Materials: A Theoretical Perspective. Journal of Physical Chemistry C, 2022, 126, 14-21.	1.5	16

#	Article	IF	CITATIONS
217	Significant influence of halogenation on the energy levels and molecular configurations of polymers in DTBDT-based polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1244-1252.	3.2	15
218	Simultaneous Performance and Stability Improvement of Ternary Polymer Solar Cells Enabled by Modulating the Molecular Packing of Acceptors. Solar Rrl, 2020, 4, 2000374.	3.1	15
219	Polymerized Smallâ€Molecule Acceptor as an Interface Modulator to Increase the Performance of Allâ€5mallâ€Molecule Solar Cells. Advanced Energy Materials, 2022, 12, 2102394.	10.2	15
220	Self-assembly of chiral amphiphiles with π-conjugated tectons. Science Bulletin, 2012, 57, 4246-4256.	1.7	14
221	Naphthodithiophene-based donor materials for solution processed organic solar cells. Chinese Chemical Letters, 2016, 27, 1271-1276.	4.8	14
222	A novel small molecule based on naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene benefits both fullerene and non-fullerene solar cells. Materials Chemistry Frontiers, 2018, 2, 143-148.	3.2	14
223	Flexible VO <i>_x</i> Nanosphere@SWCNT Hybrid Films with Dualâ€Confinement Function of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1800766.	1.9	14
224	Reduced graphene oxide-induced crystallization of CuPc interfacial layer for high performance of perovskite photodetectors. RSC Advances, 2019, 9, 3800-3808.	1.7	14
225	Highâ€Efficient Charge Generation in Singleâ€Donor omponentâ€Based pâ€iâ€n Structure Organic Solar Cell Solar Rrl, 2020, 4, 1900580.	^{s.} 3.1	14
226	Suppressing charge recombination in small-molecule ternary organic solar cells by modulating donor–acceptor interfacial arrangements. Physical Chemistry Chemical Physics, 2018, 20, 24570-24576.	1.3	13
227	Constructing high efficiency non-fullerene all-small-molecule ternary organic solar cells by employing structurally similar acceptors. Materials Chemistry Frontiers, 2021, 5, 1405-1409.	3.2	13
228	Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 13741-13747.	4.0	12
229	A High Energy Density Self-supported and Bendable Organic Electrode for Redox Supercapacitors with a Wide Voltage Window. Chinese Journal of Polymer Science (English Edition), 2020, 38, 522-530.	2.0	12
230	Trifluoro alkyl side chains in the non-fullerene acceptors to optimize the phase miscibility and vertical distribution of organic solar cells. Journal of Materials Chemistry A, 2022, 10, 8837-8845.	5.2	12
231	Chiral Nonâ€Fullerene Acceptor Enriched Bulk Heterojunctions Enable Highâ€Performance Nearâ€Infrared Circularly Polarized Light Detection. Small, 2022, 18, .	5.2	12
232	A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity. Nanoscale, 2013, 5, 11649.	2.8	11
233	Helical supramolecular aggregates of sugar-based perylene dyes: the effect of core-substituted groups. Soft Matter, 2014, 10, 7920-7924.	1.2	11
234	Ideal alloys of two donor isomers with non-covalently conformational locking for ternary organic solar cells. Journal of Materials Chemistry C, 2020, 8, 7519-7526.	2.7	11

#	Article	IF	CITATIONS
235	Research Progress of Small Molecule Donors with High Crystallinity in All Small Molecule Organic Solar Cells. Acta Chimica Sinica, 2021, 79, 284.	0.5	11
236	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. Chemistry of Materials, 2021, 33, 4578-4585.	3.2	11
237	<i>In Situ</i> Generated Mixed Ion/Electron-Conducting Scaffold with Uniform Li Deposition for Flexible Li Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6106-6115.	2.5	11
238	Self-assembly of conjugated polymers for anisotropic nanostructures. Science China Chemistry, 2012, 55, 2283-2291.	4.2	10
239	Bridging mesoscopic blend structure and property to macroscopic device performance via in situ optoelectronic characterization. Journal of Materials Chemistry, 2012, 22, 4349.	6.7	10
240	Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents. Polymers, 2016, 8, 4.	2.0	10
241	Introducing methoxy or fluorine substitutions on the conjugated side chain to reduce the voltage loss of organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11163-11171.	2.7	10
242	Enhancing the performances of all-small-molecule ternary organic solar cells via achieving optimized morphology and 3D charge pathways. Chinese Chemical Letters, 2021, 32, 2904-2908.	4.8	10
243	The interfacial degradation mechanism of polymer:fullerene bis-adduct solar cells and their stability improvement. Materials Advances, 2020, 1, 1307-1317.	2.6	9
244	Optimizing the energy levels and crystallinity of 2,2′-bithiophene-3,3′-dicarboximide-based polymer donors for high-performance non-fullerene organic solar cells. Journal of Materials Chemistry C, 2021, 9, 7575-7582.	2.7	9
245	Sulfur Compensation: A Promising Strategy against Capacity Decay in Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58771-58780.	4.0	9
246	Low nonradiative energy losses within 0.2 eV in efficient non-fullerene all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2800-2806.	2.7	9
247	Utilizing Ternary Strategy to Reduce the Influence of Polymer Batchâ€ŧoâ€Batch Variation in Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
248	A-ï€-D-ï€-A small-molecule donors with different end alkyl chains obtain different morphologies in organic solar cells. Chinese Chemical Letters, 2019, 30, 906-910.	4.8	8
249	The substituents on the intermediate electron-deficient groups in small molecular acceptors result appropriate morphologies for organic solar cells. Organic Electronics, 2021, 93, 106133.	1.4	8
250	Aryl-substituted-indanone end-capped nonfullerene acceptors for organic solar cells with a low nonradiative loss. Chemical Communications, 2022, 58, 4877-4880.	2.2	8
251	Alignment of Organic Conjugated Molecules for Highâ€Performance Device Applications. Macromolecular Rapid Communications, 2022, 43, e2100931.	2.0	8
252	Patterned Growth of Vertically Aligned Polypyrrole Nanowire Arrays. Macromolecular Rapid Communications, 2011, 32, 1998-2002.	2.0	7

#	Article	IF	CITATIONS
253	Top and bottom electrode optimization enabled high-performance flexible and semi-transparent organic solar cells. Materials Chemistry Frontiers, 2021, 5, 4310-4316.	3.2	7
254	Precise Control of Crystal Orientation of Conjugated Molecule Enables Anisotropic Charge Transport Properties. Advanced Functional Materials, 2022, 32, 2110080.	7.8	7
255	Modulating the Helicity of Sugar‣ubstituted Perylene Diimide Selfâ€assemblies by Solvent Polarilities. Chinese Journal of Chemistry, 2015, 33, 95-100.	2.6	6
256	Enhancing the performance of polymer solar cells using CuPc nanocrystals as additives. Nanotechnology, 2015, 26, 204001.	1.3	6
257	Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science, 2022, 3, 100983.	2.8	6
258	Cableâ€Shaped Lithium–Sulfur Batteries Based on Nitrogenâ€Doped Carbon/Carbon Nanotube Composite Yarns. Macromolecular Materials and Engineering, 2019, 304, 1900201.	1.7	5
259	Fluorination Induced Donor to Acceptor Transformation in A1–D–A2–D–A1-Type Photovoltaic Small Molecules. Frontiers in Chemistry, 2018, 6, 384.	1.8	4
260	A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency. Journal of Materials Chemistry C, 2020, 8, 15135-15141.	2.7	4
261	The Role of Entropy Gains in the Exciton Separation in Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2100903.	2.0	4
262	A Simple but Efficient Small Molecule with a High Open Circuit Voltage of 1.07â€V in Solutionâ€Processable Organic Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 558-562.	1.3	3
263	Robust Anionâ€Shielding Metalâ€Organic Frameworks Based Composite Interlayers To Achieve Uniform Li Deposition for Stable Liâ€Metal Anode. ChemElectroChem, 2022, 9, .	1.7	3
264	Single-bond-linked oligomeric donors for high performance organic solar cells. Chinese Chemical Letters, 2023, 34, 107321.	4.8	3
265	Investigation of charge transfer between donor and acceptor for small-molecule organic solar cells by scanning tunneling microscopy and ultrafast transient absorption spectroscopy. Nano Research, 2022, 15, 8019-8027.	5.8	3
266	Nanoscale structural and electronic evolution for increased efficiency in polymer solar cells monitored by electric scanning probe microscopy. Science Bulletin, 2014, 59, 360-368.	1.7	2
267	The effect of tuning chemical structure on the openâ€circuit voltage and photovoltaic performance of narrow bandâ€gap polymers. Journal of Polymer Science Part A, 2017, 55, 699-706.	2.5	2
268	Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Science China Chemistry, 2021, 64, 1569-1576.	4.2	2
269	Mixed Solvent as a Critical Factor in Optimizing Phase Separation of All Small Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 11769-11776.	2.5	2
270	Efficient charge generation and low open circuit voltage loss enable a PCE of 10.3% in small molecule donor and polymer acceptor organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2639-2647.	2.7	2

#	Article	IF	CITATIONS
271	Effect of Side-Chain Variation on Single-Crystalline Structures for Revealing the Structure–Property Relationships of Organic Solar Cells. Organic Materials, 2020, 02, 026-032.	1.0	1
272	Singleâ€Crystalline Structure Assisted Revealing the Critical Factors for the Properties of All‧mallâ€Molecule Organic Solar Cells. Advanced Energy and Sustainability Research, 0, , 2100099.	2.8	1
273	Research progress of large-area organic solar cells. Scientia Sinica Chimica, 2022, 52, 2001-2026.	0.2	1
274	Controlled synthesis of conducting polymer nanostructures. , 2010, , .		0
275	Macromol. Rapid Commun. 20/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0