Given Names Deactivated Family Name

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5686858/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Al/CuO reactive multilayer films additives on exploding foil initiator. Journal of Applied Physics, 2011, 110, .	2.5	101
2	Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO ₃ Reactive Multilayer Films on a Semiconductor Bridge. ACS Applied Materials & Interfaces, 2017, 9, 5580-5589.	8.0	79
3	Facile formation of nitrocellulose-coated Al/Bi 2 O 3 nanothermites with excellent energy output and improved electrostatic discharge safety. Materials and Design, 2018, 143, 93-103.	7.0	74
4	In situ preparation of explosive embedded CuO/Al/CL20 nanoenergetic composite with enhanced reactivity. Chemical Engineering Journal, 2018, 354, 885-895.	12.7	62
5	Ammonium Perchlorate as an Effective Additive for Enhancing the Combustion and Propulsion Performance of Al/CuO Nanothermites. Journal of Physical Chemistry C, 2018, 122, 10240-10247.	3.1	61
6	Superior performance of a MEMS-based solid propellant microthruster (SPM) array with nanothermites. Microsystem Technologies, 2017, 23, 3161-3174.	2.0	57
7	Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications. Journal of Applied Physics, 2013, 113, .	2.5	49
8	Controlling the energetic characteristics of micro energy storage device by in situ deposition Al/MoO3 nanolaminates with varying internal structure. Chemical Engineering Journal, 2019, 373, 345-354.	12.7	41
9	Fabrication of energetic aluminum core/hydrophobic shell nanofibers via coaxial electrospinning. Chemical Engineering Journal, 2022, 427, 132001.	12.7	41
10	Energetic semiconductor bridge device incorporating Al/MoO <i>x</i> multilayer nanofilms and negative temperature coefficient thermistor chip. Journal of Applied Physics, 2014, 115, .	2.5	24
11	From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@NC onto semiconductor bridge and its application for rapid ignition. Nanotechnology, 2020, 31, 195712.	2.6	24
12	Characteristic of energetic semiconductor bridge based on Al/MoOx energetic multilayer nanofilms with different modulation periods. Journal of Applied Physics, 2017, 121, 113301.	2.5	17
13	Experimental and numerical investigations of the effect of charge density and scale on the heat transfer behavior of Al/CuO nano-thermite. Vacuum, 2021, 184, 109878.	3.5	16
14	Characteristics of energetic semiconductor bridge initiator based on different stoichiometric ratios of Al/MoO3 reactive multilayer films under capacitor discharge conditions. Sensors and Actuators A: Physical, 2019, 296, 241-248.	4.1	14
15	Ignition characteristics of energetic nichrome bridge initiator based on Al/CuO reactive multilayer films under capacitor discharge and constant current conditions. Sensors and Actuators A: Physical, 2020, 313, 112200.	4.1	13
16	An excellent synergy between CL-20 and nanothermites in flaming and propelling with high specific impulse and superior safety to electrostatic discharge. Combustion and Flame, 2022, 240, 112024.	5.2	13
17	Assembling Hybrid Energetic Materials with Controllable Interfacial Microstructures by Electrospray. ACS Omega, 2021, 6, 16816-16825.	3.5	11
18	Characteristics of micro energetic semiconductor bridge initiator by depositing Al/MoO3 reactive multilayered films on micro bridge with different bridge size. Sensors and Actuators A: Physical, 2022, 336, 113406.	4.1	6

#	Article	IF	CITATIONS
19	Progress in Electrohydrodynamic Atomization Preparation of Energetic Materials with Controlled Microstructures. Molecules, 2022, 27, 2374.	3.8	5
20	Firing and Initiation Characteristics of Energetic Semiconductor Bridge Integrated with Varied Thickness of Al/MoO3 Nanofilms. Medziagotyra, 2018, 24, .	0.2	1
21	Chemical Propulsion of Microthrusters. , 2019, , 389-402.		1