Johannes P Van Dijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568685/publications.pdf

Version: 2024-02-01

42 papers

1,481 citations

304701 22 h-index 37 g-index

46 all docs

46 docs citations

46 times ranked

1570 citing authors

#	Article	IF	Citations
1	Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscular Disorders, 2012, 22, 306-317.	0.6	128
2	Using two-dimensional spatial information in decomposition of surface EMG signals. Journal of Electromyography and Kinesiology, 2007, 17, 535-548.	1.7	124
3	Quantitative grayâ€scale analysis in skeletal muscle ultrasound: A comparison study of two ultrasound devices. Muscle and Nerve, 2009, 39, 781-786.	2.2	107
4	Topographical Characteristics of Motor Units of the Lower Facial Musculature Revealed by Means of High-Density Surface EMG. Journal of Neurophysiology, 2006, 95, 342-354.	1.8	79
5	Motor unit number index (MUNIX) versus motor unit number estimation (MUNE): A direct comparison in a longitudinal study of ALS patients. Clinical Neurophysiology, 2012, 123, 1644-1649.	1.5	77
6	Multimodal nocturnal seizure detection in a residential care setting. Neurology, 2018, 91, e2010-e2019.	1.1	72
7	Dynamic imaging of skeletal muscle contraction in three orthogonal directions. Journal of Applied Physiology, 2010, 109, 906-915.	2.5	68
8	Muscles alive: Ultrasound detects fibrillations. Clinical Neurophysiology, 2009, 120, 932-936.	1.5	55
9	Quantitative facial muscle ultrasound: Feasibility and reproducibility. Muscle and Nerve, 2013, 48, 375-380.	2.2	50
10	Motor unit number estimation using high-density surface electromyography. Clinical Neurophysiology, 2008, 119, 33-42.	1.5	49
11	Assessment of respiratory effort during sleep: Esophageal pressure versus noninvasive monitoring techniques. Sleep Medicine Reviews, 2015, 24, 28-36.	8.5	49
12	Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population. Sleep, 2020, 43, .	1.1	46
13	Motor Unit Number Index (MUNIX): Reference values of five different muscles in healthy subjects from a multi-centre study. Clinical Neurophysiology, 2011, 122, 1895-1898.	1.5	43
14	Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? Epilepsia Open, 2017, 2, 424-431.	2.4	38
15	The Role of Central and Peripheral Muscle Fatigue in Postcancer Fatigue: A Randomized Controlled Trial. Journal of Pain and Symptom Management, 2015, 49, 173-182.	1.2	33
16	Monitoring disease progression using highâ€density motor unit number estimation in amyotrophic lateral sclerosis. Muscle and Nerve, 2010, 42, 239-244.	2,2	32
17	Protocol of the SOMNIA project: an observational study to create a neurophysiological database for advanced clinical sleep monitoring. BMJ Open, 2019, 9, e030996.	1.9	32
18	Optimal placement of bipolar surface EMG electrodes in the face based on single motor unit analysis. Psychophysiology, 2010, 47, 299-314.	2.4	31

#	Article	IF	CITATIONS
19	It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography. Nature and Science of Sleep, 2021, Volume 13, 885-897.	2.7	31
20	Motor unit action potential topography and its use in motor unit number estimation. Muscle and Nerve, 2005, 32, 280-291.	2.2	30
21	Motor unit tracking with high-density surface EMG. Journal of Electromyography and Kinesiology, 2008, 18, 920-930.	1.7	27
22	Inter-operator agreement in decomposition of motor unit firings from high-density surface EMG. Journal of Electromyography and Kinesiology, 2008, 18, 652-661.	1.7	26
23	Camera-Based Vital Signs Monitoring During Sleep – A Proof of Concept Study. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1409-1418.	6.3	22
24	Seizure pattern-specific epileptic epoch detection in patients with intellectual disability. Biomedical Signal Processing and Control, 2017, 35, 38-49.	5.7	20
25	Modeling sleep onset misperception in insomnia. Sleep, 2020, 43, .	1.1	20
26	A new and fast approach towards sEMG decomposition. Medical and Biological Engineering and Computing, 2013, 51, 593-605.	2.8	19
27	Quantitative muscle ultrasound and quadriceps strength in patients with postâ€polio syndrome. Muscle and Nerve, 2015, 51, 24-29.	2.2	18
28	Recurrent Neural Network for Classification of Snoring and Non-Snoring Sound Events. , 2018, 2018, 328-331.		18
29	Audio-based snore detection using deep neural networks. Computer Methods and Programs in Biomedicine, 2021, 200, 105917.	4.7	18
30	A broadband method of quantifying phase synchronization for discriminating seizure EEG signals. Biomedical Signal Processing and Control, 2019, 52, 371-383.	5.7	15
31	Assessment of the reliability of the motor unit size index (MUSIX) in single subject "round-robin―and multi-centre settings. Clinical Neurophysiology, 2019, 130, 666-674.	1.5	13
32	Effect of small motor unit potentials on the motor unit number estimate. Muscle and Nerve, 2008, 38, 887-892.	2.2	12
33	Estimation of the apnea-hypopnea index in a heterogeneous sleep-disordered population using optimised cardiovascular features. Scientific Reports, 2019, 9, 17448.	3.3	12
34	Model-Based Evaluation of Methods for Respiratory Sinus Arrhythmia Estimation. IEEE Transactions on Biomedical Engineering, 2021, 68, 1882-1893.	4.2	12
35	Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography. Sensors, 2020, 20, 4890.	3.8	11
36	Singular Value Decomposition for Removal of Cardiac Interference from Trunk Electromyogram. Sensors, 2021, 21, 573.	3.8	9

#	Article	IF	CITATIONS
37	EEG-based seizure detection in patients with intellectual disability: Which EEG and clinical factors are important?. Biomedical Signal Processing and Control, 2019, 49, 404-418.	5.7	8
38	Maintaining Constant Voluntary Force in Generalized Myotonia Despite Muscle Membrane Disturbances: Insights from a High-Density Surface EMG Study. Journal of Clinical Neurophysiology, 2004, 21, 114-123.	1.7	7
39	False alarms reduction in non-convulsive status epilepticus detection via continuous EEG analysis. Physiological Measurement, 2020, 41, 055009.	2.1	7
40	A Two-Layer Ensemble Method for Detecting Epileptic Seizures Using a Self-Annotation Bracelet With Motor Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	4.7	6
41	Automated way to obtain motor units' signatures and estimate their firing patterns during voluntary contractions using HD-sEMG., 2011, 2011, 4090-3.		3
42	Response to Letter-to-Editor by M. Tenhunen and S. Himanen: "Assessment of respiratory effort during sleep: Esophageal pressure versus noninvasive monitoring techniquesâ€. Sleep Medicine Reviews, 2015, 24, 105.	8.5	0