Frank Lehmkuhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5686802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 2000, 65-66, 15-29.	1.5	426
2	An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology, 2012, 243-244, 169-180.	2.1	265
3	Danube loess stratigraphy — Towards a pan-European loess stratigraphic model. Earth-Science Reviews, 2015, 148, 228-258.	9.1	241

4 Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (Western China and) Tj ETQq0 0.0 rgBT /Overlock 10

5	Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International, 2000, 65-66, 171-192.	1.5	160
6	Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas, 2005, 34, 87-100.	2.4	138
7	The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International, 2004, 118-119, 69-85.	1.5	136
8	Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: palynological and geomorphological results from the Nianbaoyeze Mountains. Quaternary Science Reviews, 2009, 28, 1449-1471.	3.0	127
9	Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results, with implications for climatic teleconnections and human history since the middle Holocene. Vegetation History and Archaeobotany, 2006, 16, 101-118.	2.1	115
10	Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews, 2021, 215, 103496.	9.1	104
11	Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes. Climate of the Past, 2014, 10, 21-39.	3.4	99
12	Loess-paleosol sequences at the northern European loess belt in Germany: Distribution, geomorphology and stratigraphy. Quaternary Science Reviews, 2016, 153, 11-30.	3.0	96
13	Aeolian sediments on the north-eastern Tibetan Plateau. Quaternary Science Reviews, 2012, 57, 71-84.	3.0	93
14	Approaches and challenges to the study of loess—Introduction to the LoessFest Special Issue. Quaternary Research, 2018, 89, 563-618.	1.7	92
15	Holocene landscape response to seasonality of storms in the Mojave Desert. Quaternary International, 2010, 215, 45-61.	1.5	90
16	Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Central Mongolia). Journal of Quaternary Science, 2001, 16, 69-87.	2.1	88
17	Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology, 2014, 214, 22-39.	2.6	86
18	Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal. Scientific Reports, 2017, 7, 5848.	3.3	86

#	Article	IF	CITATIONS
19	Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. Catena, 2016, 137, 392-405.	5.0	84
20	Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China. Quaternary Research, 2013, 79, 325-336.	1.7	82
21	Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Scientific Reports, 2016, 6, 36334.	3.3	80
22	Extent and spatial distribution of Pleistocene glaciations in eastern Tibet. Quaternary International, 1998, 45-46, 123-134.	1.5	79
23	Late Quaternary aeolian sedimentation in central and south-eastern Tibet. Quaternary International, 2000, 68-71, 117-132.	1.5	79
24	Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 337-338, 159-176.	2.3	76
25	Unmixed loess grain size populations along the northern Qilian Shan (China): Relationships between geomorphologic, sedimentologic and climatic controls. Quaternary International, 2015, 372, 151-166.	1.5	74
26	Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) – Implications for dust accumulation in south-eastern Europe. Quaternary Science Reviews, 2016, 154, 130-142.	3.0	65
27	A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Science Reviews, 2019, 190, 498-520.	9.1	65
28	Late pleistocene, Late-glacial and Holocene glacier advances on the Tibetan Plateau. Quaternary International, 1997, 38-39, 77-83.	1.5	64
29	Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios. Boreas, 2005, 34, 220-231.	2.4	64
30	Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau. Catena, 2014, 117, 23-33.	5.0	62
31	Climate pattern, snow- and timberlines in the Altai Mountains, Central Asia. Erdkunde, 2003, 57, 296-307.	0.8	57
32	Regional grain size variations in aeolian sediments along the transition between Tibetan highlands and northâ€western Chinese deserts – the influence of geomorphological settings on aeolian transport pathways. Earth Surface Processes and Landforms, 2014, 39, 1960-1978.	2.5	56
33	Aeolian dynamics at the Orlovat loess–paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence. Aeolian Research, 2015, 18, 69-81.	2.7	56
34	Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quaternary International, 2016, 425, 49-61.	1.5	55
35	Paleolakes in the Gobi region of southern Mongolia. Quaternary Science Reviews, 2018, 179, 1-23.	3.0	54
36	Late Quaternary climate and landscape evolution in arid Central Asia: A multiproxy study of lake archive Bayan Tohomin Nuur¢, Gobi desert, southern Mongolia. Journal of Asian Earth Sciences, 2012, 48, 125-135.	2.3	53

#	Article	IF	CITATIONS
37	Environmental dynamics and luminescence chronology from the Orlovat loess-palaeosol sequence (Vojvodina, northern Serbia). Journal of Quaternary Science, 2014, 29, 189-199.	2.1	51
38	The Late Pleistocene Belotinac section (southern Serbia) at the southern limit of the European loess belt: Environmental and climate reconstruction using grain size and stable C and N isotopes. Quaternary International, 2014, 334-335, 10-19.	1.5	50
39	Basin morphology and seismic stratigraphy of Lake Donggi Cona, north-eastern Tibetan Plateau, China. Quaternary International, 2010, 218, 131-142.	1.5	49
40	Holocene geomorphological processes and soil development as indicator for environmental change around Karakorum, Upper Orkhon Valley (Central Mongolia). Catena, 2011, 87, 31-44.	5.0	48
41	Millennial scale climate oscillations recorded in the Lower Danube loess over the last glacial period. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 164-181.	2.3	48
42	The difference of two laser diffraction patterns as an indicator for post-depositional grain size reduction in loess-paleosol sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 126-136.	2.3	48
43	Surface exposure dating reveals MIS-3 glacial maximum in the Khangai Mountains of Mongolia. Quaternary Research, 2014, 82, 297-308.	1.7	47
44	A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene. Scientific Reports, 2016, 6, 25791.	3.3	47
45	OSL dating of sediments from the Gobi Desert, Southern Mongolia. Quaternary Geochronology, 2010, 5, 107-113.	1.4	46
46	Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments $\hat{a} \in $ " A case study from SE Tibet, China. Geomorphology, 2015, 246, 232-254.	2.6	45
47	Characterisation of transport processes and sedimentary deposits by statistical end-member mixing analysis of terrestrial sediments in the Donggi Cona lake catchment, NE Tibetan Plateau. Sedimentary Geology, 2012, 281, 166-179.	2.1	44
48	Quartz OSL dating of late quaternary Chinese and Serbian loess: A cross Eurasian comparison of dust mass accumulation rates. Quaternary International, 2019, 502, 30-44.	1.5	44
49	Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. Journal of Hazardous Materials, 2022, 421, 126691.	12.4	43
50	Prevailing surface winds in Northern Serbia in the recent and past time periods; modern- and past dust deposition. Aeolian Research, 2018, 31, 117-129.	2.7	42
51	An outline of physical geography including Pleistocene glacial landforms of Eastern Tibet (provinces) Tj ETQq1	1 0.784314 3.1	⊦rg₿T /Overla
52	A Multi-Proxy Analysis of two Loess-Paleosol Sequences in the Northern Harz Foreland, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461, 401-417.	2.3	41
53	Luminescence chronology of fluvial and aeolian deposits in the Russian Altai (Southern Siberia). Quaternary Geochronology, 2007, 2, 195-201.	1.4	39
54	Timing and provenance of loess in the Sichuan Basin, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292, 144-154.	2.3	39

#	Article	IF	CITATIONS
55	Interpreting temporal patterns in the late Quaternary dust flux from Asia to the North Pacific. Quaternary International, 2001, 76-77, 67-76.	1.5	38
56	The Crvenka loess-paleosol sequence: A record of continuous grassland domination in the southern Carpathian Basin during the Late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 33-46.	2.3	38
57	Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Annals of Glaciology, 2016, 57, 169-178.	1.4	36
58	Environmental conditions in the Donggi Cona lake catchment, NE Tibetan Plateau, based on factor analysis of geochemical data. Journal of Asian Earth Sciences, 2012, 44, 176-188.	2.3	35
59	Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies. Global and Planetary Change, 2018, 162, 1-7.	3.5	35
60	Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria). Quaternary Science Reviews, 2020, 248, 106602.	3.0	35
61	Timings and causes of glacial advances across the PEP-II transect (East-Asia to Antarctica) during the last glaciation cycle. Quaternary International, 2004, 118-119, 55-68.	1.5	34
62	Quaternary glaciations in the Verkhoyansk Mountains, Northeast Siberia. Quaternary Research, 2010, 74, 145-155.	1.7	33
63	Holocene glaciers in the Mongolian Altai: An example from the Turgen–Kharkhiraa Mountains. Journal of Asian Earth Sciences, 2012, 52, 12-20.	2.3	33
64	Late Pleistocene and Holocene loess sedimentation in central and western Qilian Shan (China) revealed by OSL dating. Quaternary International, 2015, 372, 120-129.	1.5	33
65	Luminescence chronology from the Verkhoyansk Mountains (North-Eastern Siberia). Quaternary Geochronology, 2007, 2, 255-259.	1.4	31
66	Interaction of geomorphological processes on the north-eastern Tibetan Plateau during the Holocene, an example from a sub-catchment of Lake Donggi Cona. Geomorphology, 2014, 210, 23-35.	2.6	31
67	Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor — An example from northern Chinese drylands. Geomorphology, 2015, 250, 113-127.	2.6	31
68	Loess correlations – Between myth and reality. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 4-23.	2.3	31
69	Loess distribution and related Quaternary sediments in the Carpathian Basin. Journal of Maps, 2018, 14, 661-670.	2.0	29
70	Dry periods on the NE Tibetan Plateau during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346-347, 108-119.	2.3	28
71	Late Pleistocene aeolian dust provenances and wind direction changes reconstructed by heavy mineral analysis of the sediments of the Dehner dry maar (Eifel, Germany). Global and Planetary Change, 2016, 147, 25-39.	3.5	28
72	Aeolian sedimentation in arid and semi-arid environments of Western Mongolia. Lecture Notes in Earth Sciences, 2004, , 195-218.	0.5	28

#	Article	IF	CITATIONS
73	The Aurignacian way of life: Contextualizing early modern human adaptation in the Carpathian Basin. Quaternary International, 2018, 485, 150-166.	1.5	27
74	Gradients in climate, geology, and topography affecting coastal alluvial fan morphodynamics in hyperarid regions – The Atacama perspective. Global and Planetary Change, 2020, 185, 102994.	3.5	27
75	Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). Catena, 2021, 196, 104913.	5.0	26
76	Luminescence dating of loess deposits from the Remagen-Schwalbenberg site, Western Germany. Geochronometria, 2015, 42, .	0.8	25
77	Digital image analysis of outcropping sediments: Comparison to photospectrometric data from Quaternary loess deposits at Şanoviţa (Romania) and Achenheim (France). Quaternary International, 2017, 429, 100-107.	1.5	25
78	Quantifying land degradation in the Zoige Basin, NE Tibetan Plateau using satellite remote sensing data. Journal of Mountain Science, 2017, 14, 77-93.	2.0	25
79	Genesis of loess-like sediments and soils at the foothills of the Banat Mountains, Romania – Examples from the Paleolithic sites Româneşti and Coşava. Quaternary International, 2014, 351, 213-230.	1.5	24
80	Implications of (reworked) aeolian sediments and paleosols for Holocene environmental change in Western Mongolia. Geomorphology, 2017, 292, 59-71.	2.6	24
81	Environmental changes during the late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 144-155.	2.3	24
82	Glaciers and equilibrium line altitudes of the eastern Nyainqêntanglha Range, SE Tibet. Journal of Maps, 2015, 11, 575-588.	2.0	22
83	OSL chronologies of paleoenvironmental dynamics recorded by loess-paleosol sequences from Europe: Case studies from the Rhine-Meuse area and the Neckar Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 105-125.	2.3	22
84	Landscape and climate on the northern Tibetan Plateau during the late Quaternary. Geomorphology, 2017, 286, 78-92.	2.6	21
85	Aspects of late Quaternary geomorphological development in the Khangai Mountains and the Gobi Altai Mountains (Mongolia). Geomorphology, 2018, 312, 24-39.	2.6	21
86	High-resolution paleoclimatic proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quaternary International, 2019, 502, 95-107.	1.5	21
87	Signatures of recent pollution profiles in comparable central European rivers – Examples from the international River Basin District Meuse. Catena, 2020, 193, 104646.	5.0	21
88	Toward a late Holocene glacial chronology for the eastern Nyainqêntanglha Range, southeastern Tibet. Quaternary Science Reviews, 2015, 107, 243-259.	3.0	20
89	Spatial loess distribution in the eastern Carpathian Basin: a novel approach based on geoscientific maps and data. Journal of Maps, 2017, 13, 173-181.	2.0	20
90	Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines. Geomorphology, 2017, 293, 178-200.	2.6	20

#	Article	IF	CITATIONS
91	New luminescence-based geochronology framing the last two glacial cycles at the southern limit of European Pleistocene loess in Stalać (Serbia). Geochronometria, 2017, 44, 150-161.	0.8	20
92	De plateau and its implications for post-IR IRSL dating of polymineral fine grains. Quaternary Geochronology, 2015, 30, 147-153.	1.4	19
93	Geochemical imprints of coupled paleoenvironmental and provenance change in the lacustrine sequence of Orog Nuur, Gobi Desert of Mongolia. Journal of Paleolimnology, 2017, 58, 511-532.	1.6	19
94	The Eltville Tephra (Western Europe) age revised: Integrating stratigraphic and dating information from different Last Glacial loess localities. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466, 240-251.	2.3	19
95	Investigating the last glacial Gravettian site â€~SÃigvÃir Lyukas Hill' (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 77-90.	2.3	19
96	Late Quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 77-91.	2.3	19
97	Cultural evolution and environmental change in Central Europe between 40 and 15 ka. Quaternary International, 2021, 581-582, 225-240.	1.5	19
98	Disentangling Sedimentary Pathways for the Pleniglacial Lower Danube Loess Based on Geochemical Signatures. Frontiers in Earth Science, 2021, 9, .	1.8	19
99	The extent of Late Pleistocene glaciations in the Altai and Khangai Mountains. Developments in Quaternary Sciences, 2004, , 243-254.	0.1	18
100	Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas, 2005, 34, 87-100.	2.4	18
101	The Extent and Timing of Late Pleistocene Glaciations in the Altai and Neighbouring Mountain Systems. Developments in Quaternary Sciences, 2011, 15, 967-979.	0.1	18
102	Holocene geomorphic processes and landscape evolution in the lower reaches of the Orkhon River (northern Mongolia). Catena, 2012, 98, 17-28.	5.0	18
103	Impact of abandoned water mills on Central European foothills to lowland rivers: a reach scale example from the Wurm River, Germany. Geografiska Annaler, Series A: Physical Geography, 2018, 100, 221-239.	1.5	18
104	Loess and other Quaternary sediments in Germany. Journal of Maps, 2018, 14, 330-340.	2.0	18
105	Testing the potential of K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan complexes in arid environments. Quaternary International, 2020, 556, 124-143.	1.5	18
106	Geomorphology of the Tsetseg Nuur basin, Mongolian Altai – lake development, fluvial sedimentation and aeolian transport in a semi-arid environment. Journal of Maps, 2013, 9, 361-366.	2.0	17
107	Late Pleistocene glaciations at Lake Donggi Cona, eastern Kunlun Shan (<scp>NE</scp> Tibet): early maxima and a diminishing trend of glaciation during the last glacial cycle. Boreas, 2017, 46, 503-524.	2.4	17
108	Landscape instability at the end of MIS 3 in western Central Europe: evidence from a multi proxy study on a Loess-Palaeosol-Sequence from the eastern Lower Rhine Embayment, Germany. Quaternary International, 2019, 502, 119-136.	1.5	17

#	Article	IF	CITATIONS
109	Late Pleistocene alluvial fan evolution along the coastal Atacama Desert (N Chile). Global and Planetary Change, 2020, 190, 103091.	3.5	17
110	Simulated regional dust cycle in the Carpathian Basin and the Adriatic Sea region during the Last Glacial Maximum. Quaternary International, 2021, 581-582, 114-127.	1.5	17
111	Influence of 200Âyears of water resource management on a typical central European river. Does industrialization straighten a river?. Environmental Sciences Europe, 2021, 33, .	5.5	17
112	Sediment provenance of late Quaternary morainic, fluvial and loess-like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions. Geological Journal, 2007, 42, 477-497.	1.3	16
113	Modern and past periglacial features in Central Asia and their implication for paleoclimate reconstructions. Progress in Physical Geography, 2016, 40, 369-391.	3.2	16
114	A decade of fluvial morphodynamics: relocation and restoration of the Inde River (North-Rhine) Tj ETQq0 0 0 rgB	Г /Qverloc	k 10 Tf 50 54 16
115	Cyanobacteria and loess—an underestimated interaction. Plant and Soil, 2019, 439, 293-308.	3.7	16
116	Revisiting the chronostratigraphy of Late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quaternary International, 2020, 542, 65-79.	1.5	16
117	Chronological Assessment of the Balta Alba Kurgan Loess-Paleosol Section (Romania) – A Comparative Study on Different Dating Methods for a Robust and Precise Age Model. Frontiers in Earth Science, 2021, 8, .	1.8	16
118	Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial. Climate of the Past, 2014, 10, 1673-1692.	3.4	15
119	The MIS 3/2 transition in a new loess profile at Krems-Wachtberg East – A multi-methodological approach. Quaternary International, 2018, 464, 370-385.	1.5	15
120	Exhaustive Screening of Long-Term Pollutants in Riverbank Sediments of the Wurm River, Germany. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	15
121	Late Pleistocene lake level, glaciation and climate change in the Mongolian Altai deduced from sedimentological and palynological archives. Quaternary Research, 2021, 99, 168-189.	1.7	15
122	Multiple environmental change at the time of the Modern Human passage through the Middle East: First results from geoarcheological investigations on Upper Pleistocene sediments in the Wadi Sabra (Jordan). Quaternary International, 2012, 274, 55-72.	1.5	13
123	Al-Ansab and the Dead Sea: Mid-MIS 3 archaeology and environment of the early Ahmarian population of the Levantine corridor. PLoS ONE, 2020, 15, e0239968.	2.5	13
124	Human impact on fluvial systems in Europe with special regard to today's river restorations. Environmental Sciences Europe, 2021, 33, .	5.5	13
125	Mapping the distribution of weathered Pleistocene wadi deposits in Southern Jordan using ASTER, SPOT-5 data and laboratory spectroscopic analysis. Catena, 2013, 107, 57-70.	5.0	12
126	High-resolution geomorphological map of a low mountain range near Aachen, Germany. Journal of Maps, 2013, 9, 245-253.	2.0	12

#	Article	IF	CITATIONS
127	A modelling approach to reconstruct Little Ice Age climate from remote-sensing glacier observations in southeastern Tibet. Annals of Glaciology, 2016, 57, 359-370.	1.4	12
128	Arsenic distribution and pathway scenarios for sediments and water in a peri-urban Mongolian small-scale coal mining area (NalaikhÂDistrict, Ulaanbaatar). Environmental Science and Pollution Research, 2020, 27, 5845-5863.	5.3	12
129	Formation and geochronology of Last Interglacial to Lower Weichselian loess/palaeosol sequences – case studies from the Lower Rhine Embayment, Germany. E&G Quaternary Science Journal, 2012, 61, 48-63.	0.7	12
130	Reconstructing fluvial, lacustrine and aeolian process dynamics in Western Mongolia. Zeitschrift Für Geomorphologie, 2012, 56, 267-300.	0.8	11
131	Morphotectonics of the northern Bogd fault and implications for Middle Pleistocene to modern uplift rates in southern Mongolia. Geomorphology, 2020, 367, 107330.	2.6	11
132	Middle to Late Pleistocene environments based on stable organic carbon and nitrogen isotopes of loessâ€palaeosol sequences from the Carpathian Basin. Boreas, 2021, 50, 184-204.	2.4	11
133	Morphogenetic problems of the upper Huang He drainage Basin. Geo Journal, 1994, 34, 31-40.	3.1	10
134	Reconstruction of Late Pleistocene paleoenvironments in southern Germany using two high-resolution loess-paleosol records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 58-76.	2.3	10
135	Paleotopography and anthropogenic deposition thickness of the city of Aachen, Germany. Journal of Maps, 2019, 15, 269-277.	2.0	10
136	Floodplain chronology and sedimentation rates for the past 200Âyears derived from trace element gradients, organic compounds, and numerical modeling. Environmental Earth Sciences, 2019, 78, 1.	2.7	10
137	Geomorphology of the coastal alluvial fan complex Guanillos, northern Chile. Journal of Maps, 2019, 15, 436-447.	2.0	10
138	A chronological and palaeoenvironmental reâ€evaluation of two loessâ€palaeosol records in the northern Harz foreland, Germany, based on innovative modelling tools. Boreas, 2021, 50, 746-763.	2.4	10
139	Measurements of soil temperatures in the northern Mongolian Altai as indicators for periglacial geomorphodynamic in mountain areas. Zeitschrift Für Geomorphologie, 2000, 44, 75-102.	0.8	10
140	Glazial morphologische und dendrochronologische Untersuchungen neuzeitlicher Eisrandlagen Ost- und Südtibets. Erdkunde, 1996, 50, .	0.8	10
141	Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios. Boreas, 2008, 34, 220-231.	2.4	9
142	Middle Pleistocene landforms in the Danish Sector of the southern North Sea imaged on 3D seismic data. Geological Society Special Publication, 2012, 368, 111-127.	1.3	9
143	Discriminating sediment archives and sedimentary processes in the arid endorheic Ejina Basin, NW China using a robust geochemical approach. Journal of Asian Earth Sciences, 2016, 119, 128-144.	2.3	9
144	Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes. Catena, 2016, 137, 203-218.	5.0	9

#	Article	IF	CITATIONS
145	Project house water: a novel interdisciplinary framework to assess the environmental and socioeconomic consequences of flood-related impacts. Environmental Sciences Europe, 2017, 29, 23.	5.5	9
146	Indirect dating of historical land use through mining: Linking heavy metal analyses of fluvial deposits to archaeobotanical data and written accounts. Geoarchaeology - an International Journal, 2010, 25, 837-856.	1.5	8
147	A geochemical approach on reconstructing Upper Pleistocene environmental conditions from wadi deposits - an example from the Wadi Sabra (Jordan). Zeitschrift Für Geomorphologie, 2014, 58, 51-80.	0.8	8
148	Reassessing the timeframe of Upper Palaeolithic deposits in the CeahlÄfu Basin (Eastern Carpathians,) Tj ETQq 101020.	0 0 0 rgBT 1.4	/Overlock 10 8
149	Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records. Scientific Reports, 2020, 10, 5455.	3.3	8
150	The Early Upper Paleolithic Site Crvenka-At, Serbia–The First Aurignacian Lowland Occupation Site in the Southern Carpathian Basin. Frontiers in Earth Science, 2021, 9, .	1.8	8
151	Optical dating of sediments in Wadi Sabra (SW Jordan). Quaternary Geochronology, 2013, 18, 9-16.	1.4	7
152	Late Quaternary landscape evolution and paleoenvironmental implications from multiple geomorphic dryland systems, Orog Nuur Basin, Mongolia. Earth Surface Processes and Landforms, 0, , .	2.5	7
153	Weathering under coastal hyperaridity – Late Quaternary development of spectral, textural, and gravelometric alluvial fan surface characteristics. Quaternary Science Reviews, 2022, 277, 107339.	3.0	7
154	Geomorphological map of the Wüstebach (Nationalpark Eifel, Germany)—an example of human impact on mid-European mountain areas. Journal of Maps, 2010, 6, 520-530.	2.0	6
155	Geomorphological evolution of the Petrovaradin Fortress Palaeolithic site (Novi Sad, Serbia). Quaternary Research, 2021, 103, 21-34.	1.7	6
156	Initial soil formation in an artificial river valley - Interplay of anthropogenic landscape shaping and fluvial dynamics. Geomorphology, 2022, 398, 108064.	2.6	6
157	Decoding geochemical signals of the Schwalbenberg Loess-Palaeosol-Sequences — A key to Upper Pleistocene ecosystem responses to climate changes in western Central Europe. Catena, 2022, 212, 106076.	5.0	6
158	Contemporary pollution of surface sediments from the Algarve shelf, Portugal. Marine Pollution Bulletin, 2022, 176, 113410.	5.0	6
159	Long-time impact of a large dam on its downstream river's morphology: determined by sediment characteristics, pollutants as a marker, and numerical modelling. Journal of Sedimentary Environments, 2022, 7, 403-424.	1.5	6
160	Extent and Timing of Quaternary Glaciations in the Verkhoyansk Mountains. Developments in Quaternary Sciences, 2011, 15, 877-881.	0.1	5
161	Holocene aeolian mantles and inter-bedded paleosols on the southern Tibetan Plateau. Quaternary International, 2015, 372, 33-44.	1.5	5
162	Testing feldspar and quartz luminescence dating of sandy loess sediments from the Doroshivtsy site (Ukraine) against radiocarbon dating. Quaternary International, 2017, 432, 13-19.	1.5	5

#	Article	IF	CITATIONS
163	Potential hotspots of persistent organic pollutants in alluvial sediments of the meandering Wurm River, Germany. Journal of Soils and Sediments, 2020, 20, 1034-1045.	3.0	5
164	Sedimentology of a Late Quaternary lacustrine record from the southâ€eastern Carpathian Basin. Journal of Quaternary Science, 2021, 36, 1414-1425.	2.1	5
165	Detailed luminescence dating of dust mass accumulation rates over the last two glacial-interglacial cycles from the Irig loess-palaeosol sequence, Carpathian Basin. Global and Planetary Change, 2022, 215, 103895.	3.5	5
166	Geomorphological Evidence of Active Faulting in Low Seismicity Regions—Examples From the Valley of Gobi Lakes, Southern Mongolia. Frontiers in Earth Science, 2021, 8, .	1.8	4
167	New results concerning the pedo―and chronostratigraphy of the loess–palaeosol sequence Attenfeld (Bavaria, Germany) derived from a multiâ€methodological approach. Journal of Quaternary Science, 2021, 36, 1382.	2.1	4
168	Fluvial stacking due to plate collision and uplift during the Early Pleistocene in Cyprus. Open Geosciences, 2010, 2, .	1.7	3
169	Palaeoecological background of the Upper Palaeolithic site of Ságvár, Hungary: radiocarbonâ€dated malacological and sedimentological studies on the Late Pleistocene environment. Journal of Quaternary Science, 0, , .	2.1	3
170	Geology, geomorphology, Quaternary landscape development in the Aachen Forest (City of Aachen). Jahresbericht Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 2016, 98, 169-198.	0.2	3
171	New chronology and extended palaeoenvironmental data to the 1975 loess profile of Madaras brickyard, South Hungary. Journal of Quaternary Science, 2021, 36, 1364-1381.	2.1	3
172	Upper Palaeolithic site probability in Lower Austria – a geoarchaeological multi-factor approach. Journal of Maps, 2022, 18, 610-618.	2.0	3
173	Suitable indicators to determine tsunami impact on coastal areas in Northern Japan, Aomori Prefecture. Environmental Monitoring and Assessment, 2022, 194, 385.	2.7	3
174	Interface Tracking in Digitally Recorded Glaciological Data. Annals of Glaciology, 1987, 9, 50-54.	1.4	2
175	Pleistocene glaciations in southern and eastern Tibet. Developments in Quaternary Sciences, 2004, , 361-369.	0.1	2
176	Reply to "The Gravettian and the Epigravettian chronology in eastern central Europe: A comment on Bösken et al. 2017― Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506, 270-271.	2.3	2
177	SPATIAL DISTRIBUTION, POLLUTION, AND HEALTH RISK ASSESSMENT OF HEAVY METAL IN INDUSTRIAL AREA SOILS OF ULAANBAATAR, MONGOLIA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B4-2021, 123-133.	0.2	2
178	The Effects of Seasonal Wind Regimes on the Evolution of Reversing Barchanoid Dunes. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	2
179	Thermal conductivity of supraglacial volcanic deposits in Iceland. International Journal of Earth Sciences, 2020, 109, 569-585.	1.8	1
180	Reply to the discussion paper by P. Sümegi and S. Gulyás: Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.'s "A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin†Earth-Science Reviews, 2021, 220, 103737.	9.1	1

#	Article	IF	CITATIONS
181	HolozÃ ¤ e Klima- und Landschaftsgeschichte. , 2018, , 161-194.		1
182	Die nivale Höhenstufe und ein Versuch ihrer klimatischen Abgrenzung anhand ausgewälter Gebiete der Alpen und Skandinaviens. Erdkunde, 1992, 46, .	0.8	1
183	HolozÃ ¤ e fluviale Geomorphodynamik und Besiedlungsgeschichte in einem kleinen Einzugsgebiet am nördlichen Harzrand. E&G Quaternary Science Journal, 2003, 53, 74-93.	0.7	1
184	Der Mittelgebirgsrand. , 2022, , 63-87.		1
185	Landscape and quaternary climatic changes in eastern Tibet and surroundings. Geo Journal, 1994, 34, 5-6.	3.1	0
186	Geoarchaeological investigations into the chronostratigraphy of Late Pleistocene human occupation in the Wadi Sabra (South Central Jordan). Quaternary International, 2012, 279-280, 273.	1.5	0
187	Corrigendum to "Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes" published in Clim. Past, 10, 21–39, 2014. Climate of the Past_2014_10_207-207	3.4	0
188	Early to Mid-Holocene Lake High-Stand Sediments at Lake Donggi Cona, Northeastern Tibetan Plateau, China–Response to Comments by Mischke et al., Quaternary Research 79(3), pp. 325–336. Quaternary Research, 2015, 83, 259-260.	1.7	0
189	Der Mittelgebirgsrand. , 2018, , 51-70.		0
190	On the challenges of dating alluvial sediments with radiocesium: a caveat from the Wurm River, Central Europe. SN Applied Sciences, 2019, 1, 1.	2.9	0