
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5686528/publications.pdf Version: 2024-02-01

HEDVÃO COTTET

#	Article	IF	CITATIONS
1	Living Polymerization of1±-Amino AcidN-Carboxyanhydrides(NCA) upon Decreasing the Reaction Temperature. Macromolecular Rapid Communications, 2004, 25, 1221-1224.	2.0	157
2	Determination of Dendrigraft Poly- <scp>l</scp> -Lysine Diffusion Coefficients by Taylor Dispersion Analysis. Biomacromolecules, 2007, 8, 3235-3243.	2.6	131
3	Taylor Dispersion Analysis of Mixtures. Analytical Chemistry, 2007, 79, 9066-9073.	3.2	100
4	Importance of Hydrodynamic Shielding for the Dynamic Behavior of Short Polyelectrolyte Chains. Physical Review Letters, 2008, 100, 096104.	2.9	82
5	Chemical analysis and aqueous solution properties of charged amphiphilic block copolymers PBA-b-PAA synthesized by MADIX®. Journal of Colloid and Interface Science, 2007, 316, 897-911.	5.0	73
6	Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polymer International, 2002, 51, 661-665.	1.6	66
7	The effect of blob size and network dynamics on the size-based separation of polystyrenesulfonates by capillary electrophoresis in the presence of entangled polymer solutions. Electrophoresis, 1998, 19, 2151-2162.	1.3	63
8	A semi-empirical approach to the modeling of the electrophoretic mobility in free solution: Application to polystyrenesulfonates of various sulfonation rates. Electrophoresis, 2000, 21, 3529-3540.	1.3	63
9	An Expeditious Multigramâ€5cale Synthesis of Lysine Dendrigraft (DGL) Polymers by Aqueous <i>N</i> â€Carboxyanhydride Polycondensation. Chemistry - A European Journal, 2010, 16, 2309-2316.	1.7	62
10	Influence of polyelectrolyte coating conditions on capillary coating stability and separation efficiency in capillary electrophoresis. Electrophoresis, 2008, 29, 3013-3023.	1.3	60
11	The Peptide Formation Mediated by Cyanate Revisited.N-Carboxyanhydrides as Accessible Intermediates in the Decomposition ofN-Carbamoylamino Acids. Journal of the American Chemical Society, 2006, 128, 7412-7413.	6.6	56
12	Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing. Analytical Biochemistry, 2011, 413, 8-15.	1.1	56
13	Determination of Individual Diffusion Coefficients in Evolving Binary Mixtures by Taylor Dispersion Analysis: Application to the Monitoring of Polymer Reaction. Analytical Chemistry, 2010, 82, 1793-1802.	3.2	54
14	Characterization of Amphiphilic Diblock Copolymers Synthesized by MADIX Polymerization Process. Macromolecules, 2007, 40, 2672-2682.	2.2	51
15	From small charged molecules to oligomers: A semiempirical approach to the modeling of actual mobility in free solution. Electrophoresis, 2000, 21, 1493-1504.	1.3	46
16	Size-Based Characterization by the Coupling of Capillary Electrophoresis to Taylor Dispersion Analysis. Analytical Chemistry, 2008, 80, 1829-1832.	3.2	46
17	Control of the EOF in CE using polyelectrolytes of different charge densities. Electrophoresis, 2007, 28, 925-931.	1.3	45
18	Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking. Journal of Chromatography A, 2015, 1399, 80-87.	1.8	45

#	Article	IF	CITATIONS
19	On the optimization of operating conditions for Taylor dispersion analysis of mixtures. Analyst, The, 2014, 139, 3552-3562.	1.7	44
20	Nonaqueous and aqueous capillary electrophoresis of synthetic polymers. Journal of Chromatography A, 2005, 1068, 59-73.	1.8	42
21	Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants. Langmuir, 2010, 26, 18681-18693.	1.6	42
22	Use of coated capillaries for the electrophoretic separation of stereoisomers of a growth hormone secretagogue. Electrophoresis, 2009, 30, 3772-3779.	1.3	41
23	Measuring Arbitrary Diffusion Coefficient Distributions of Nano-Objects by Taylor Dispersion Analysis. Analytical Chemistry, 2015, 87, 8489-8496.	3.2	40
24	Non-aqueous capillary electrophoresis using non-dissociating solvents. Journal of Chromatography A, 2001, 915, 241-251.	1.8	39
25	Focusing and Mobilization of Bacteria in Capillary Electrophoresis. Analytical Chemistry, 2011, 83, 1571-1578.	3.2	39
26	Comparison of single and double detection points Taylor Dispersion Analysis for monodisperse and polydisperse samples. Journal of Chromatography A, 2012, 1241, 123-127.	1.8	39
27	Quantitative Analysis in Capillary Electrophoresis: Transformation of Raw Electropherograms into Continuous Distributions. Analytical Chemistry, 2015, 87, 1050-1057.	3.2	39
28	Limits in Size of Taylor Dispersion Analysis: Representation of the Different Hydrodynamic Regimes and Application to the Size-Characterization of Cubosomes. Analytical Chemistry, 2017, 89, 13487-13493.	3.2	39
29	Controlling the Melting of Kinetically Frozen Poly(butyl acrylate- <i>b</i> -acrylic acid) Micelles via Addition of Surfactant. Langmuir, 2007, 23, 9939-9948.	1.6	38
30	Study of interactions between oppositely charged dendrigraft poly-l-lysine and human serum albumin by continuous frontal analysis capillary electrophoresis and fluorescence spectroscopy. Journal of Chromatography A, 2013, 1289, 127-132.	1.8	38
31	Effective Charge Determination of Dendrigraft Poly- <scp>l</scp> -lysine by Capillary Isotachophoresis. Macromolecules, 2013, 46, 533-540.	2.2	38
32	Mechanistic Study of <i>α</i> â€Amino Acid <i>N</i> â€Carboxyanhydride (NCA) Polymerization by Capillary Electrophoresis. Macromolecular Chemistry and Physics, 2008, 209, 1628-1637.	1.1	37
33	Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions—Application to protein analysis. Journal of Chromatography A, 2011, 1218, 3537-3544.	1.8	37
34	Correlation of Length of Linear Oligo(ethanamino) Amides with Gene Transfer and Cytotoxicity. ChemMedChem, 2014, 9, 2104-2110.	1.6	37
35	Association between Protein Particles and Long Amphiphilic Polymers:  Effect of the Polymer Hydrophobicity on Binding Isotherms. Macromolecules, 1999, 32, 3922-3929.	2.2	36
36	Influence of polyelectrolyte capillary coating conditions on protein analysis in CE. Electrophoresis, 2009, 30, 1888-1898.	1.3	36

#	Article	IF	CITATIONS
37	Heartâ€cutting 2D E with onâ€line preconcentration for the chiral analysis of native amino acids. Electrophoresis, 2010, 31, 1029-1035.	1.3	36
38	Electrophoretic behaviour of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions. Journal of Chromatography A, 1997, 772, 369-384.	1.8	35
39	Simultaneous Electrokinetic and Hydrodynamic Injection for High Sensitivity Bacteria Analysis in Capillary Electrophoresis. Analytical Chemistry, 2011, 83, 4949-4954.	3.2	35
40	Determination of effective charge of small ions, polyelectrolytes and nanoparticles by capillary electrophoresis. Journal of Chromatography A, 2012, 1247, 154-164.	1.8	35
41	Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis. Langmuir, 2011, 27, 4040-4047.	1.6	33
42	Prediction of Polyelectrolyte Complex Stoichiometry for Highly Hydrophilic Polyelectrolytes. Macromolecules, 2016, 49, 3881-3888.	2.2	33
43	Interactions between Oppositely Charged Polyelectrolytes by Isothermal Titration Calorimetry: Effect of Ionic Strength and Charge Density. Journal of Physical Chemistry B, 2017, 121, 2684-2694.	1.2	33
44	Quantification of Adsorption and Optimization of Separation of Proteins in Capillary Electrophoresis. Analytical Chemistry, 2020, 92, 10743-10750.	3.2	33
45	Nonaqueous Capillary Electrophoresisâ~'Mass Spectrometry of Synthetic Polymers. Analytical Chemistry, 2004, 76, 335-344.	3.2	32
46	Heartâ€cutting 2â€D CE using multiple detection points for chiral analysis of native amino acids. Electrophoresis, 2009, 30, 2-10.	1.3	32
47	Size and charge characterization of polymeric drug delivery systems by Taylor dispersion analysis and capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2013, 405, 5369-5379.	1.9	32
48	Size characterization of commercial micelles and microemulsions by Taylor dispersion analysis. International Journal of Pharmaceutics, 2015, 492, 46-54.	2.6	32
49	Determination of Polymer Effective Charge by Indirect UV Detection in Capillary Electrophoresis: Toward the Characterization of Macromolecular Architectures. Macromolecules, 2009, 42, 2767-2774.	2.2	31
50	Modulation of the electroosmotic mobility using polyelectrolyte multilayer coatings for protein analysis by capillary electrophoresis. Analytica Chimica Acta, 2019, 1057, 152-161.	2.6	31
51	Nonaqueous Capillary Zone Electrophoresis of Synthetic Organic Polypeptides. Analytical Chemistry, 2003, 75, 5554-5560.	3.2	30
52	Charge- and Size-Based Separations of Polyelectrolytes by Heart-Cutting Two-Dimensional Capillary Electrophoresis. Macromolecular Chemistry and Physics, 2005, 206, 628-634.	1.1	29
53	Kinetic study of the polymerization of α-amino acid N-carboxyanhydrides in aqueous solution using capillary electrophoresis. Journal of Chromatography A, 2002, 952, 239-248.	1.8	28
54	Synthesis of double hydrophilic block copolymers and induced assembly with oligochitosan for the preparation of polyion complex micelles. Soft Matter, 2011, 7, 5836.	1.2	27

#	Article	IF	CITATIONS
55	Heart-cutting two-dimensional electrophoresis in a single capillary. Journal of Chromatography A, 2004, 1051, 25-32.	1.8	26
56	Heart-Cutting Two-Dimensional Capillary Electrophoresis for the On-Line Purification and Separation of Derivatized Amino Acids. Analytical Chemistry, 2008, 80, 1730-1736.	3.2	26
57	Taylor dispersion analysis with two detection points on a commercial capillary electrophoresis apparatus. Journal of Chromatography A, 2012, 1235, 174-177.	1.8	26
58	Peptide release from SEDDS containing hydrophobic ion pair therapeutic peptides measured by Taylor dispersion analysis. International Journal of Pharmaceutics, 2019, 559, 228-234.	2.6	26
59	Polydispersity Analysis of Taylor Dispersion Data: The Cumulant Method. Analytical Chemistry, 2014, 86, 6471-6478.	3.2	25
60	Size-based characterization of nanoparticle mixtures by the inline coupling of capillary electrophoresis to Taylor dispersion analysis. Journal of Chromatography A, 2015, 1426, 220-225.	1.8	25
61	Neutral Coatings for the Study of Polycation/Multicharged Anion Interactions by Capillary Electrophoresis: Application to Dendrigraft Poly- <scp>l</scp> -lysines with Negatively Multicharged Molecules. Analytical Chemistry, 2010, 82, 7362-7368.	3.2	24
62	Hydrodynamic Behavior of Dendrigraft Polylysines in Water and Dimethylformamide. Polymers, 2012, 4, 20-31.	2.0	24
63	Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48.	3.6	23
64	Cosolvents in Self-Emulsifying Drug Delivery Systems (SEDDS): Do They Really Solve Our Solubility Problems?. Molecular Pharmaceutics, 2020, 17, 3236-3245.	2.3	23
65	Determination of Homopolypeptide Conformational Changes by the Modeling of Electrophoretic Mobilities. Analytical Chemistry, 2005, 77, 6047-6054.	3.2	22
66	Determination and Modeling of Peptide pKaby Capillary Zone Electrophoresis. Analytical Chemistry, 2006, 78, 5394-5402.	3.2	22
67	Monitoring Biopolymer Degradation by Taylor Dispersion Analysis. Biomacromolecules, 2015, 16, 3945-3951.	2.6	22
68	Capillary Zone Electrophoresis-Top-Down Tandem Mass Spectrometry for In-Depth Characterization of Hemoglobin Proteoforms in Clinical and Veterinary Samples. Analytical Chemistry, 2020, 92, 10531-10539.	3.2	22
69	Noncovalent coatings for the separation of synthetic polypeptides by nonaqueous capillary electrophoresis. Electrophoresis, 2005, 26, 2187-2197.	1.3	21
70	Extracting Information from the Ionic Strength Dependence of Electrophoretic Mobility by Use of the Slope Plot. Analytical Chemistry, 2012, 84, 9422-9430.	3.2	21
71	Monitoring surface functionalization of dendrigraft poly-l-lysines via click chemistry by capillary electrophoresis and Taylor dispersion analysis. Journal of Chromatography A, 2013, 1273, 111-116.	1.8	21
72	Physico-chemical characterization of polymeric micelles loaded with platinum derivatives by capillary electrophoresis and related methods. Journal of Controlled Release, 2014, 196, 139-145.	4.8	21

#	Article	IF	CITATIONS
73	Size characterization of lipid-based self-emulsifying pharmaceutical excipients during lipolysis using Taylor dispersion analysis with fluorescence detection. International Journal of Pharmaceutics, 2018, 537, 94-101.	2.6	21
74	Unraveling the Speciation of β-Amyloid Peptides during the Aggregation Process by Taylor Dispersion Analysis. Analytical Chemistry, 2021, 93, 6523-6533.	3.2	19
75	Quantifying the Heterogeneity of Chemical Structures in Complex Charged Polymers through the Dispersity of Their Distributions of Electrophoretic Mobilities or of Compositions. Analytical Chemistry, 2016, 88, 1674-1681.	3.2	18
76	Thermodynamic Behavior of a Supramolecular System Self-Assembled by Electrostatic Interaction in Aqueous Solution. Results And Theoretical Analysis. Journal of Physical Chemistry B, 1999, 103, 10866-10875.	1.2	17
77	On the use of the activation energy concept to investigate analyte and network deformations in entangled polymer solution capillary electrophoresis of synthetic polyelectrolytes. Electrophoresis, 2001, 22, 684-691.	1.3	17
78	Electrophoretic Behavior of Amphiphilic Diblock Copolymer Micelles. Macromolecules, 2005, 38, 6620-6628.	2.2	17
79	Modeling the electrophoresis of oligolysines. Electrophoresis, 2011, 32, 2788-2796.	1.3	17
80	Investigating the Influence of Phosphate Ions on Poly(<scp>l</scp> -lysine) Conformations by Taylor Dispersion Analysis. Macromolecules, 2014, 47, 5320-5327.	2.2	17
81	A New Robust Estimator of Polydispersity from Dynamic Light Scattering Data. Analytical Chemistry, 2016, 88, 2630-2636.	3.2	17
82	Taylor Dispersion Analysis of Polysaccharides Using Backscattering Interferometry. Analytical Chemistry, 2017, 89, 6710-6718.	3.2	17
83	Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Analytical Chemistry, 2022, 94, 4677-4685.	3.2	17
84	On-line sample stacking of peptides in capillary electrophoresis for the study of prebiotic reactions between α,α-dialkylated amino acids and amino acid N-carboxyanhydrides. Journal of Chromatography A, 2009, 1216, 5748-5754.	1.8	16
85	Effect of Dendrimer Generation on the Interactions between Human Serum Albumin and Dendrigraft Polylysines. Langmuir, 2014, 30, 4450-4457.	1.6	16
86	Capillary electrophoresis of associative diblock copolymers. Journal of Chromatography A, 2001, 939, 109-121.	1.8	15
87	Size-Based Characterization of an Ionic Polydiacetylene by Taylor Dispersion Analysis and Capillary Electrophoresis. Macromolecules, 2009, 42, 2679-2685.	2.2	15
88	Fast Characterization of Polyelectrolyte Complexes by Inline Coupling of Capillary Electrophoresis to Taylor Dispersion Analysis. Analytical Chemistry, 2012, 84, 1740-1743.	3.2	15
89	Phosphonated oligoallylamine: Synthesis, characterization in water, and development of layer by layer assembly. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1244-1251.	2.4	15
90	Modelling and predicting the interactions between oppositely and variously charged polyelectrolytes by frontal analysis continuous capillary electrophoresis. Soft Matter, 2016, 12, 9728-9737.	1.2	15

#	Article	IF	CITATIONS
91	Hydrodynamic size characterization of a self-emulsifying lipid pharmaceutical excipient by Taylor dispersion analysis with fluorescent detection. International Journal of Pharmaceutics, 2016, 513, 262-269.	2.6	15
92	Separation of living and dead polymers in synthetic polypeptide mixtures by nonaqueous capillary electrophoresis using differences in ionization states. Electrophoresis, 2005, 26, 3300-3306.	1.3	14
93	Fast Characterization of Polyplexes by Taylor Dispersion Analysis. Macromolecules, 2015, 48, 7216-7221.	2.2	14
94	Influence of the ionic strength of acidic background electrolytes on the separation of proteins by capillary electrophoresis. Journal of Chromatography A, 2016, 1432, 145-151.	1.8	14
95	Water-Based Extraction of Bioactive Principles from Blackcurrant Leaves and Chrysanthellum americanum: A Comparative Study. Foods, 2020, 9, 1478.	1.9	14
96	Size-based separation of synthetic polyelectrolytes in entangled polymer solution capillary electrophoresis: The effect of binary mixtures of separating polymers differing in molecular mass. Electrophoresis, 2002, 23, 2788-2793.	1.3	13
97	Highly Resolutive Separations of Hardly Soluble Synthetic Polypeptides by Capillary Electrophoresis. Analytical Chemistry, 2010, 82, 394-399.	3.2	13
98	The Effect of Molar Mass and Charge Density on the Formation of Complexes between Oppositely Charged Polyelectrolytes. Polymers, 2017, 9, 50.	2.0	13
99	Superhydrophobic capillary coatings: Elaboration, characterization and application to electrophoretic separations. Journal of Chromatography A, 2019, 1603, 361-370.	1.8	13
100	Field enhanced bacterial sample stacking in isotachophoresis using wide-bore capillaries. Journal of Chromatography A, 2012, 1268, 180-184.	1.8	12
101	Study of Antibacterial Activity by Capillary Electrophoresis Using Multiple UV Detection Points. Analytical Chemistry, 2012, 84, 3302-3310.	3.2	12
102	Modeling the electrophoresis of highly charged peptides: Application to oligolysines. Journal of Separation Science, 2012, 35, 556-562.	1.3	12
103	Optimizing Water-Based Extraction of Bioactive Principles of Hawthorn: From Experimental Laboratory Research to Homemade Preparations. Molecules, 2019, 24, 4420.	1.7	12
104	Polyelectrolyte Multilayers in Capillary Electrophoresis. ChemPlusChem, 2022, 87, e202200028.	1.3	12
105	Nonâ€uniform surface charge distributions in CE: Theoretical and experimental approach based on Taylor dispersion. Electrophoresis, 2008, 29, 4226-4237.	1.3	11
106	Separation of Synthetic (Co)Polymers by Capillary Electrophoresis Techniques. , 2008, 384, 541-567.		11
107	Characterization of cationic copolymers by capillary electrophoresis using indirect UV detection and contactless conductivity detection. Journal of Chromatography A, 2012, 1219, 188-194.	1.8	11
108	Generalized polymer effective charge measurement by capillary isotachophoresis. Journal of Chromatography A, 2014, 1370, 255-262.	1.8	11

#	Article	IF	CITATIONS
109	Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE. Electrophoresis, 2007, 28, 3617-3624.	1.3	10
110	Characterization of Copolymer Latexes by Capillary Electrophoresis. Langmuir, 2010, 26, 1700-1706.	1.6	10
111	Biodegradation of metal-based ultra-small nanoparticles: A combined approach using TDA-ICP-MS and CE-ICP-MS. Analytica Chimica Acta, 2021, 1185, 339081.	2.6	10
112	Modeling the electrophoresis of oligoglycines. Journal of Separation Science, 2010, 33, 2430-2438.	1.3	9
113	Taking Advantage of Electric Field Induced Bacterial Aggregation for the Study of Interactions between Bacteria and Macromolecules by Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 6761-6768.	3.2	9
114	Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging. Analytica Chimica Acta, 2016, 930, 39-48.	2.6	9
115	Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization. Analytica Chimica Acta, 2017, 951, 1-15.	2.6	9
116	Effect of Dendrigraft Generation on the Interaction between Anionic Polyelectrolytes and Dendrigraft Poly(l-Lysine). Polymers, 2018, 10, 45.	2.0	9
117	Size-Based Characterization of Polysaccharides by Taylor Dispersion Analysis with Photochemical Oxidation or Backscattering Interferometry Detections. Macromolecules, 2019, 52, 4421-4431.	2.2	9
118	Analysis and characterization of aluminum chlorohydrate oligocations by capillary electrophoresis. Journal of Chromatography A, 2017, 1492, 144-150.	1.8	8
119	Study of Interactions between Antigens and Polymeric Adjuvants in Vaccines by Frontal Analysis Continuous Capillary Electrophoresis. Biomacromolecules, 2020, 21, 3364-3373.	2.6	8
120	Screening for pancreatic lipase natural modulators by capillary electrophoresis hyphenated to spectrophotometric and conductometric dual detection. Analyst, The, 2021, 146, 1386-1401.	1.7	8
121	Supramolecular Selfâ€Assembly of DNA with a Cationic Polythiophene: From Polyplexes to Fibers. ChemNanoMat, 2019, 5, 703-709.	1.5	7
122	Heart-cutting two-dimensional electrophoresis in a single capillary. Journal of Chromatography A, 2004, 1051, 25-32.	1.8	7
123	Chemoprevention with a tea from hawthorn (Crataegus oxyacantha) leaves and flowers attenuates colitis in rats by reducing inflammation and oxidative stress. Food Chemistry: X, 2021, 12, 100139.	1.8	7
124	Size-based characterisation of nanomaterials by Taylor dispersion analysis. , 2014, , 173-192.		6
125	Antigen-Adjuvant Interactions in Vaccines by Taylor Dispersion Analysis: Size Characterization and Binding Parameters. Analytical Chemistry, 2021, 93, 6508-6515.	3.2	6
126	Taylor Dispersion Analysis and Atomic Force Microscopy Provide a Quantitative Insight into the Aggregation Kinetics of Al² (1–40)/Al² (1–42) Amyloid Peptide Mixtures. ACS Chemical Neuroscience, 2022, 13, 786-795.	1.7	6

#	Article	IF	CITATIONS
127	What is the Contribution of Counterâ€ions to the Absolute Molar Mass of Polyelectrolytes Determined by SECâ€MALLS?. Macromolecular Chemistry and Physics, 2016, 217, 2654-2659.	1.1	5
128	On the ionic strength dependence of the electrophoretic mobility: From 2D to 3D slopeâ€plots. Electrophoresis, 2017, 38, 624-632.	1.3	5
129	Size-characterization of natural and synthetic polyisoprenes by Taylor dispersion analysis. Polymer Testing, 2018, 66, 244-250.	2.3	4
130	Characterization of Diblock Copolymers by Capillary Electrophoresis: From Electrophoretic Mobility Distribution to Distribution of Composition. Macromolecules, 2020, 53, 334-345.	2.2	4
131	Mass transfer efficiency in rare earth extraction using a hollow fiber pertraction device. Separation and Purification Technology, 2020, 251, 117330.	3.9	4
132	Separation and Characterization of Highly Charged Polyelectrolytes Using Free-Solution Capillary Electrophoresis. Polymers, 2018, 10, 1331.	2.0	3
133	Mobility Shift Affinity Capillary Electrophoresis at High Ligand Concentrations: Application to Aluminum Chlorohydrate–Protein Interactions. ACS Omega, 2018, 3, 17547-17554.	1.6	3
134	Characterization of ultrahigh molar mass polyelectrolytes by capillary electrophoresis. Journal of Chromatography A, 2020, 1631, 461536.	1.8	3
135	Determination and Modeling of Peptide pKaby Capillary Zone Electrophoresis. Analytical Chemistry, 2007, 79, 3020-3020.	3.2	2
136	Generation and characterization of air microâ€bubbles in highly hydrophobic capillaries. Electrophoresis, 2021, , .	1.3	2
137	Separation of three strains of polio virus by capillary zone electrophoresis and study of their interaction with aluminum oxyhydroxide. Journal of Chromatography A, 2022, 1667, 462838.	1.8	2
138	Determination of polymer log D distributions by micellar and microemulsion electrokinetic chromatography. Journal of Chromatography A, 2013, 1318, 244-250.	1.8	1
139	Capillary electrophoresis for aluminum ion speciation: Optimized separation conditions for complex polycation mixtures. Journal of Chromatography A, 2018, 1552, 79-86.	1.8	1
140	Determination of ultrahigh molar mass of polyelectrolytes by Taylor dispersion analysis. Journal of Chromatography A, 2022, 1670, 462949.	1.8	1
141	Characterization of hydrosoluble fraction and oligomers in poly(vinylidene chloride) latexes by capillary electrophoresis using electrophoretic mobility modeling. Journal of Chromatography A, 2019, 1598, 223-231.	1.8	0
142	Molecular Origins of Life: Homochirality as a Consequence of the Dynamic Co-Emergence and Co-Evolution of Peptides and Chemical Energetics. , 2004, , 49-64.		0