Robert P Dickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5686173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Racial Bias in Pulse Oximetry Measurement Among Patients About to Undergo Extracorporeal Membrane Oxygenation in 2019-2020. Chest, 2022, 161, 971-978.	0.8	60
2	Breath analysis for detection and trajectory monitoring of acute respiratory distress syndrome in swine. ERJ Open Research, 2022, 8, 00154-2021.	2.6	3
3	Approaches to Sampling the Respiratory Microbiome. Respiratory Medicine, 2022, , 3-19.	0.1	2
4	The bacterial density of clinical rectal swabs is highly variable, correlates with sequencing contamination, and predicts patient risk of extraintestinal infection. Microbiome, 2022, 10, 2.	11.1	8
5	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	2.9	82
6	Outcomes and Predictors of Severe Hyperoxemia in Patients Receiving Mechanical Ventilation: A Single-Center Cohort Study. Annals of the American Thoracic Society, 2022, , .	3.2	5
7	Antibiotics cause metabolic changes in mice primarily through microbiome modulation rather than behavioral changes. PLoS ONE, 2022, 17, e0265023.	2.5	8
8	Toll-Interacting Protein and Altered Lung Microbiota in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	0
9	Therapeutic Targeting of the Respiratory Microbiome. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 535-544.	5.6	24
10	AMAISE: a machine learning approach to index-free sequence enrichment. Communications Biology, 2022, 5, .	4.4	0
11	SNIKT: sequence-independent adapter identification and removal in long-read shotgun sequencing data. Bioinformatics, 2022, 38, 3830-3832.	4.1	4
12	Ultra-rapid somatic variant detection via real-time targeted amplicon sequencing. Communications Biology, 2022, 5, .	4.4	2
13	Feasibility of Embedding a Scalable, Virtually Enabled Biorepository in the Electronic Health Record for Precision Medicine. JAMA Network Open, 2021, 4, e2037739.	5.9	6
14	Comparing Clinical Features and Outcomes in Mechanically Ventilated Patients with COVID-19 and Acute Respiratory Distress Syndrome. Annals of the American Thoracic Society, 2021, 18, 1876-1885.	3.2	34
15	Sepsis Subclasses: A Framework for Development and Interpretation*. Critical Care Medicine, 2021, 49, 748-759.	0.9	81
16	Biological subphenotypes of acute respiratory distress syndrome may not reflect differences in alveolar inflammation. Physiological Reports, 2021, 9, e14693.	1.7	19
17	Predicting Intensive Care Transfers and Other Unforeseen Events: Analytic Model Validation Study and Comparison to Existing Methods. JMIR Medical Informatics, 2021, 9, e25066.	2.6	20
18	Whole lung tissue is the preferred sampling method for amplicon-based characterization of murine lung microbiota. Microbiome, 2021, 9, 99.	11.1	24

#	Article	IF	CITATIONS
19	Nucleic Acid–based Testing for Noninfluenza Viral Pathogens in Adults with Suspected Community-acquired Pneumonia. An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1070-1087.	5.6	23
20	On Bugs and Blowholes: Why Is Aspiration the Rule, Not the Exception?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1049-1051.	5.6	6
21	A novel swine model of the acute respiratory distress syndrome using clinically relevant injury exposures. Physiological Reports, 2021, 9, e14871.	1.7	7
22	Metagenomics to Identify Pathogens in Diabetic Foot Ulcers and the Potential Impact for Clinical Care. Current Diabetes Reports, 2021, 21, 26.	4.2	4
23	Lung microbiota predict chronic rejection in healthy lung transplant recipients: a prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 601-612.	10.7	49
24	Is the lung microbiome alive? Lessons from Antarctic soil. European Respiratory Journal, 2021, 58, 2100321.	6.7	2
25	Toll-like receptors, environmental caging, and lung dysbiosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L404-L415.	2.9	8
26	Lung microbiota and COVID-19 severity. Nature Microbiology, 2021, 6, 1217-1218.	13.3	10
27	Selective Modulation of the Pulmonary Innate Immune Response Does Not Change Lung Microbiota in Healthy Mice. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 734-736.	5.6	6
28	The Lung Microbiome: A Central Mediator of Host Inflammation and Metabolism in Lung Cancer Patients?. Cancers, 2021, 13, 13.	3.7	21
29	Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts. Lancet Respiratory Medicine,the, 2021, 9, 1377-1386.	10.7	71
30	SquiggleNet: real-time, direct classification of nanopore signals. Genome Biology, 2021, 22, 298.	8.8	33
31	Response to "Response of Lung Microbiota to Changes of Pulmonary Innate Immunity Under Healthy Conditions― American Journal of Respiratory and Critical Care Medicine, 2021, , .	5.6	1
32	Rapid identification of pathogens associated with ventilator-associated pneumonia by Nanopore sequencing. Respiratory Research, 2021, 22, 310.	3.6	6
33	Methods in Lung Microbiome Research. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 283-299.	2.9	94
34	Gut Microbiota Predict Enterococcus Expansion but Not Vancomycin-Resistant Enterococcus Acquisition. MSphere, 2020, 5, .	2.9	11
35	Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Science Translational Medicine, 2020, 12, .	12.4	97
36	Electronic DNA Analysis of CSF Cell-free Tumor DNA to Quantify Multi-gene Molecular Response in Pediatric High-grade Glioma. Clinical Cancer Research, 2020, 26, 6266-6276.	7.0	26

#	Article	IF	CITATIONS
37	The importance of airway and lung microbiome in the critically ill. Critical Care, 2020, 24, 537.	5.8	36
38	Response to COVID-19 phenotyping correspondence. European Respiratory Journal, 2020, 56, 2002756.	6.7	10
39	Turning the Lungs Inside Out: The Intersecting Microbiomes of the Lungs and the Built Environment. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1618-1620.	5.6	10
40	Racial Bias in Pulse Oximetry Measurement. New England Journal of Medicine, 2020, 383, 2477-2478.	27.0	529
41	Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. European Respiratory Journal, 2020, 56, 1902320.	6.7	17
42	The perils of premature phenotyping in COVID-19: a call for caution. European Respiratory Journal, 2020, 56, 2001768.	6.7	51
43	Critical Relevance of Stochastic Effects on Low-Bacterial-Biomass 16S rRNA Gene Analysis. MBio, 2020, 11, .	4.1	32
44	Mechanical Stretch: An Important and Understudied Feature of Acute and Chronic Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 992-994.	5.6	2
45	Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 555-563.	5.6	202
46	COVIDâ€19: The Uninvited Guest in the Intensive Care Unit — Implications for Pharmacotherapy. Pharmacotherapy, 2020, 40, 382-386.	2.6	8
47	Making the case for causality: what role do lung microbiota play in idiopathic pulmonary fibrosis?. European Respiratory Journal, 2020, 55, 2000318.	6.7	5
48	A comprehensive assessment of multi-system responses to a renal inoculation of uropathogenic E. coli in swine. PLoS ONE, 2020, 15, e0243577.	2.5	4
49	Title is missing!. , 2020, 15, e0243577.		0
50	Title is missing!. , 2020, 15, e0243577.		0
51	Title is missing!. , 2020, 15, e0243577.		0
52	Title is missing!. , 2020, 15, e0243577.		0
53	Title is missing!. , 2020, 15, e0243577.		0
54	Title is missing!. , 2020, 15, e0243577.		0

#	Article	IF	CITATIONS
55	Radiographic Honeycombing and Altered Lung Microbiota in Patients with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1544-1547.	5.6	20
56	Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device. Analytical and Bioanalytical Chemistry, 2019, 411, 6435-6447.	3.7	39
57	Manipulation of the microbiome in critical illness—probiotics as a preventive measure against ventilator-associated pneumonia. Intensive Care Medicine Experimental, 2019, 7, 37.	1.9	17
58	Lung Microbiota Contribute to Pulmonary Inflammation and Disease Progression in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1127-1138.	5.6	205
59	Lung Microbiome Is Influenced by the Environment and Asthmatic Status in an Equine Model of Asthma. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 189-197.	2.9	33
60	Sampling the lung microbiome. , 2019, , 1-17.		4
61	The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster by Environment, and Reflect Variation in Baseline Lung Innate Immunity. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 497-508.	5.6	189
62	The Lung Microbiome and ARDS. It Is Time to Broaden the Model. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 549-551.	5.6	33
63	Turning "Sarkoid―into "Dropsy― A Valiant, Next-Generation Attempt. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 154-155.	5.6	0
64	Bacterial Dissemination to the Brain in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 747-756.	5.6	74
65	Respiratory Tract Colonization by Candida Species Portends Worse Outcomes in Immunocompromised Patients. Clinical Pulmonary Medicine, 2018, 25, 197-201.	0.3	18
66	Kudzu and sleeper cells: the varied ecology of respiratory infections. European Respiratory Journal, 2018, 52, 1801607.	6.7	3
67	Shorter Versus Longer Courses of Antibiotics for Infection in Hospitalized Patients: A Systematic Review and Metaâ€Analysis. Journal of Hospital Medicine, 2018, 13, 336-342.	1.4	64
68	Rethinking pneumonia: A paradigm shift with practical utility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13148-13150.	7.1	16
69	Lung Dysbiosis, Inflammation, and Injury in Hematopoietic Cell Transplantation. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1312-1321.	5.6	42
70	Understanding the role of the microbiome in chronic obstructive pulmonary disease: principles, challenges, and future directions. Translational Research, 2017, 179, 71-83.	5.0	57
71	Macrolides, inflammation and the lung microbiome: untangling the web of causality. Thorax, 2017, 72, 10-12.	5.6	16
72	Gut microbiota and protection from pneumococcal pneumonia. Gut, 2017, 66, 384.3-384.	12.1	27

#	Article	IF	CITATIONS
73	Bacterial Topography of the Healthy Human Lower Respiratory Tract. MBio, 2017, 8, .	4.1	366
74	Economic disparities and survival from critical illness. Lancet Respiratory Medicine,the, 2017, 5, 601-603.	10.7	3
75	Rapid Pathogen Identification in Bacterial Pneumonia Using Real-Time Metagenomics. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1610-1612.	5.6	127
76	The significance of <i>Candida</i> in the human respiratory tract: our evolving understanding. Pathogens and Disease, 2017, 75, .	2.0	68
77	Reply: Clinical Metagenomics for the Diagnosis of Hospital-acquired Infections: Promises and Hurdles. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1618-1619.	5.6	3
78	Microbiome in interstitial lung disease. Current Opinion in Pulmonary Medicine, 2017, 23, 404-410.	2.6	41
79	Dysbiosis in the intensive care unit: Microbiome science coming to the bedside. Journal of Critical Care, 2017, 38, 84-91.	2.2	82
80	Immunocompromised Pneumonia. , 2017, , 215-220.		0
81	A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. Journal of Leukocyte Biology, 2016, 100, 943-950.	3.3	81
82	The Lung Microbiome in HIV. Getting to the HAART of the Host–Microbe Interface. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 136-137.	5.6	9
83	Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nature Microbiology, 2016, 1, 16113.	13.3	433
84	The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. Journal of Immunology, 2016, 196, 4839-4847.	0.8	291
85	The microbiome and critical illness. Lancet Respiratory Medicine, the, 2016, 4, 59-72.	10.7	323
86	The Microbiome and the Respiratory Tract. Annual Review of Physiology, 2016, 78, 481-504.	13.1	622
87	Hospitalization Type and Subsequent Severe Sepsis. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 581-588.	5.6	124
88	Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. MBio, 2015, 6, e00037.	4.1	601
89	Homeostasis and its disruption in the lung microbiome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1047-L1055.	2.9	112
90	Intraalveolar Catecholamines and the Human Lung Microbiome. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 257-259.	5.6	36

#	Article	IF	CITATIONS
91	Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Annals of the American Thoracic Society, 2015, 12, 821-830.	3.2	390
92	The bacterial microbiota in inflammatory lung diseases. Clinical Immunology, 2015, 159, 177-182.	3.2	40
93	The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLoS Pathogens, 2015, 11, e1004923.	4.7	390
94	Medical intensive care unit clinician attitudes and perceived barriers towards early mobilization of critically ill patients: a cross-sectional survey study. BMC Anesthesiology, 2014, 14, 84.	1.8	88
95	Cell-associated bacteria in the human lung microbiome. Microbiome, 2014, 2, 28.	11.1	66
96	Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans. Clinical Microbiology Reviews, 2014, 27, 927-948.	13.6	200
97	Analysis of Culture-Dependent versus Culture-Independent Techniques for Identification of Bacteria in Clinically Obtained Bronchoalveolar Lavage Fluid. Journal of Clinical Microbiology, 2014, 52, 3605-3613.	3.9	129
98	The role of the microbiome in exacerbations of chronic lung diseases. Lancet, The, 2014, 384, 691-702.	13.7	366
99	Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respiratory Medicine,the, 2014, 2, 238-246.	10.7	242
100	Changes in the Lung Microbiome following Lung Transplantation Include the Emergence of Two Distinct Pseudomonas Species with Distinct Clinical Associations. PLoS ONE, 2014, 9, e97214.	2.5	162
101	The role of the bacterial microbiome in lung disease. Expert Review of Respiratory Medicine, 2013, 7, 245-257.	2.5	323
102	Internal Medicine Trainee Self-Assessments of End-of-Life Communication Skills Do Not Predict Assessments of Patients, Families, or Clinician-Evaluators. Journal of Palliative Medicine, 2012, 15, 418-426.	1.1	71
103	A porcine model for initial surge mechanical ventilator assessment and evaluation of two limited-function ventilators*. Critical Care Medicine, 2011, 39, 527-532.	0.9	13
104	A 65-Year-Old Man With Severe Hyponatremia and Alcohol Abuse. Chest, 2010, 138, 445-447.	0.8	6
105	Toluene toxicity as a cause of elevated anion gap metabolic acidosis. Respiratory Care, 2009, 54, 1115-7.	1.6	12