
Dany Gaillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The gustatory pathway is involved in CD36â€mediated orosensory perception of longâ€chain fatty acids in the mouse. FASEB Journal, 2008, 22, 1458-1468.	0.2	199
2	The Lipid-Sensor Candidates CD36 and GPR120 Are Differentially Regulated by Dietary Lipids in Mouse Taste Buds: Impact on Spontaneous Fat Preference. PLoS ONE, 2011, 6, e24014.	1.1	136
3	WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nature Communications, 2017, 8, 15397.	5.8	104
4	β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates. PLoS Genetics, 2015, 11, e1005208.	1.5	56
5	Molecular Mechanisms of Fat Preference and Overeating. Annals of the New York Academy of Sciences, 2008, 1141, 163-175.	1.8	50
6	Do we taste fat?. Biochimie, 2007, 89, 265-269.	1.3	44
7	Taste bud cells of adult mice are responsive to Wnt/βâ€catenin signaling: Implications for the renewal of mature taste cells. Genesis, 2011, 49, 295-306.	0.8	36
8	Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences. Gut, 2006, 55, 1321-1331.	6.1	33
9	β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genetics, 2017, 13, e1006990.	1.5	32
10	Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. ELife, 2021, 10, .	2.8	24
11	Measurement of Behavioral Taste Responses in Mice: Twoâ€Bottle Preference, Lickometer, and Conditioned Tasteâ€Aversion Tests. Current Protocols in Mouse Biology, 2016, 6, 380-407.	1.2	21
12	Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Scientific Reports, 2019, 9, 17934.	1.6	18
13	Tyrosine kinase inhibitors protect the salivary gland from radiation damage by increasing DNA double-strand break repair. Journal of Biological Chemistry, 2021, 296, 100401.	1.6	13
14	New evidence for fat as a primary taste quality. Acta Physiologica, 2019, 226, e13246.	1.8	11
15	A mechanistic overview of taste bud maintenance and impairment in cancer therapies. Chemical Senses, 2021, 46, .	1.1	6
16	Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. International Journal of Molecular Sciences, 2021, 22, 7163.	1.8	6
17	Generation and Culture of Lingual Organoids Derived from Adult Mouse Taste Stem Cells. Journal of Visualized Experiments, 2021, , .	0.2	4
18	Sur la piste du « goût du gras ». Oleagineux Corps Gras Lipides, 2006, 13, 309-314.	0.2	1

#	Article	IF	CITATIONS
19	RÃ1e des lipides dans la régulation du comportement alimentaire. Oleagineux Corps Gras Lipides, 2008, 15, 275-278.	0.2	1
20	Perception gustative des lipides alimentaires : paradigme et paradoxes. Oleagineux Corps Gras Lipides, 2008, 15, 41-45.	0.2	1