
Juergen Hauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685767/publications.pdf Version: 2024-02-01

LUEDCEN HALLED

#	Article	IF	CITATIONS
1	Correlated spectral fluctuations quantified by line shape analysis of fifth-order two-dimensional electronic spectra. Journal of Chemical Physics, 2022, 156, 084114.	3.0	3
2	Reduced Molecular Flavins as Single-Electron Reductants after Photoexcitation. Journal of the American Chemical Society, 2022, 144, 4721-4726.	13.7	16
3	Recent advances of multiphoton absorption in metal–organic frameworks. Journal of Materials Chemistry C, 2022, 10, 6912-6934.	5.5	12
4	Operando Study of Structure Degradation in Solid‧tate Dye‧ensitized Solar Cells with a TiO ₂ Photoanode Having Ordered Mesopore Arrays. Solar Rrl, 2022, 6, .	5.8	4
5	Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach. Journal of Physical Chemistry B, 2022, 126, 3985-3994.	2.6	5
6	A nitrophenyl-carbazole based push-pull linker as a building block for non-linear optical active coordination polymers: A structural and photophysical study. Dyes and Pigments, 2021, 186, 109012.	3.7	8
7	Hole-mediated photoredox catalysis: tris(<i>p</i> -substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Organic Chemistry Frontiers, 2021, 8, 1132-1142.	4.5	72
8	Entrapped Molecular Photocatalyst and Photosensitizer in Metal–Organic Framework Nanoreactors for Enhanced Solar CO ₂ Reduction. ACS Catalysis, 2021, 11, 871-882.	11.2	65
9	The central role of the metal ion for photoactivity: Zn– vs. Ni–Mabiq. Chemical Science, 2021, 12, 7521-7532.	7.4	11
10	Intraband dynamics and exciton trapping in the LH2 complex of Rhodopseudomonas acidophila. Journal of Chemical Physics, 2021, 154, 045102.	3.0	9
11	Activation of 2â€Cyclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angewandte Chemie, 2021, 133, 10243-10251.	2.0	5
12	Activation of 2â€Cyclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angewandte Chemie - International Edition, 2021, 60, 10155-10163.	13.8	15
13	Achromatic frequency doubling of supercontinuum pulses for transient absorption spectroscopy. Optics Express, 2021, 29, 39042.	3.4	3
14	Interplay of exciton annihilation and transport in fifth order electronic spectroscopy. Chemical Physics, 2020, 528, 110433.	1.9	13
15	Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads. Frontiers in Chemistry, 2020, 8, 579166.	3.6	5
16	Time-domain photocurrent spectroscopy based on a common-path birefringent interferometer. Review of Scientific Instruments, 2020, 91, 123101.	1.3	4
17	Annihilation Dynamics of Molecular Excitons Measured at a Single Perturbative Excitation Energy. Journal of Physical Chemistry Letters, 2020, 11, 7776-7781.	4.6	17
18	Quantum biology revisited. Science Advances, 2020, 6, eaaz4888.	10.3	266

#	Article	IF	CITATIONS
19	Magnetic pulses enable multidimensional optical spectroscopy of dark states. Journal of Chemical Physics, 2020, 152, 084201.	3.0	0
20	Molecular annihilation dynamics measured in the perturbative regime of excitation. , 2020, , .		0
21	Simulations of pump probe spectra of a molecular complex at high excitation intensity. Chemical Physics, 2019, 527, 110458.	1.9	2
22	Ultrafast bi-excitonic dynamics and annihilation in molecular and mesoscopic systems. EPJ Web of Conferences, 2019, 205, 06013.	0.3	2
23	Simulating exciton migration and annihilation dynamics in higher order spectroscopies of a molecular trimer. EPJ Web of Conferences, 2019, 205, 06016.	0.3	0
24	Exciton-Exciton Annihilation as a Mechanism for Uphill Transfer in a Molecular Excitonic System. EPJ Web of Conferences, 2019, 205, 06017.	0.3	0
25	The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chemical Science, 2019, 10, 4792-4804.	7.4	40
26	Single-molecule excitation–emission spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4064-4069.	7.1	16
27	Single-Molecule Excitation-Emission Spectroscopy at Room Temperature Based on a Common-Path Interferometer. , 2019, , .		0
28	Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research, 2018, 135, 45-54.	2.9	20
29	Effects of tunable excitation in carotenoids explained by the vibrational energy relaxation approach. Photosynthesis Research, 2018, 135, 55-64.	2.9	8
30	Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach. Optics Express, 2018, 26, 2270.	3.4	22
31	Excitation-Emission Fluorescence Spectroscopy with Single Molecule Sensitivity Using a Common-Path Interferometer. , 2018, , .		0
32	Anharmonic vibrational effects in linear and two-dimensional electronic spectra. Physical Chemistry Chemical Physics, 2017, 19, 24752-24760.	2.8	25
33	Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer. Optics Express, 2017, 25, A483.	3.4	31
34	Finite pulse effects in single and double quantum spectroscopies. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 430.	2.1	33
35	Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1627-1640.	1.0	74
36	A Unified Picture of S* in Carotenoids. Journal of Physical Chemistry Letters, 2016, 7, 3347-3352.	4.6	59

#	Article	IF	CITATIONS
37	A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy. Vibrational Spectroscopy, 2016, 85, 167-174.	2.2	10
38	Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 10893-10909.	2.5	51
39	Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nature Communications, 2015, 6, 7755.	12.8	129
40	Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. Journal of Chemical Physics, 2015, 142, 212434.	3.0	48
41	Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids. Physical Chemistry Chemical Physics, 2015, 17, 19491-19499.	2.8	34
42	Distinguishing Electronic and Vibronic Coherence in 2D Spectra by Their Temperature Dependence. Journal of Physical Chemistry Letters, 2014, 5, 404-407.	4.6	35
43	Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J-Aggregates. Journal of Physical Chemistry A, 2013, 117, 6007-6014.	2.5	88
44	Explaining the Temperature Dependence of Spirilloxanthin's S* Signal by an Inhomogeneous Ground State Model. Journal of Physical Chemistry A, 2013, 117, 6303-6310.	2.5	22
45	Precise phasing of 2D-electronic spectra in a fully non-collinear phase-matching geometry. Optics Express, 2013, 21, 15904.	3.4	25
46	Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New Journal of Physics, 2013, 15, 085016.	2.9	82
47	Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy. EPJ Web of Conferences, 2013, 41, 08019.	0.3	Ο
48	Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2012, 136, 204503.	3.0	49
49	Two-Dimensional Electronic Spectroscopy for Vibrational Wavepacket Analysis and Electronic Structure Determination. , 2012, , .		Ο
50	System-Dependent Signatures of Electronic and Vibrational Coherences in Electronic Two-Dimensional Spectra. Journal of Physical Chemistry Letters, 2012, 3, 1497-1502.	4.6	80
51	A General control mechanism of energy flow in the excited state of polyenic biochromophores. Faraday Discussions, 2011, 153, 213.	3.2	13
52	High Frequency Vibrational Modulations in Two-Dimensional Electronic Spectra and Their Resemblance to Electronic Coherence Signatures. Journal of Physical Chemistry B, 2011, 115, 5383-5391.	2.6	97
53	Dynamics of quantum wave packets in complex molecules traced by 2D coherent electronic correlation spectroscopy. Procedia Chemistry, 2011, 3, 105-117.	0.7	5
54	Electronic ground state conformers of β-carotene and their role in ultrafast spectroscopy. Chemical Physics Letters, 2011, 506, 122-127.	2.6	40

#	Article	IF	CITATIONS
55	The Role of Nuclear Modes in Coupled Electronic Systems: Quantum Coating, Vibronic Modulation, or Quantum-Dissipative Energy Flow?. , 2011, , .		0
56	Ultrafast multiphoton transient absorption of \hat{I}^2 -carotene. Chemical Physics, 2010, 373, 38-44.	1.9	15
57	Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. Journal of Chemical Physics, 2010, 132, .	3.0	55
58	Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations. Journal of Chemical Physics, 2010, 133, 094505.	3.0	61
59	Visible Two-Dimensional Spectroscopy with sub-7 fs Pulses Uncovers Ultrafast Electron-Phonon Coupling Dynamics. , 2010, , .		Ο
60	Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model. Journal of Physical Chemistry A, 2010, 114, 8179-8189.	2.5	49
61	Electronic Double-Quantum Coherences and Their Impact on Ultrafast Spectroscopy: The Example of β-Carotene. Journal of Physical Chemistry Letters, 2010, 1, 3366-3370.	4.6	49
62	Coherent Multidimensional Spectroscopies Refine the Energy Level Scheme of \hat{I}^2 -carotene. , 2010, , .		0
63	Coherent Control for Molecular Ultrafast Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 37-55.	0.3	Ο
64	On the paradigm of coherent control: the phase-dependent light–matter interaction in the shaping window. New Journal of Physics, 2009, 11, 105049.	2.9	11
65	Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state. Chemical Physics, 2009, 357, 181-187.	1.9	28
66	Two-Dimensional Electronic Spectroscopy of β-Carotene. Journal of Physical Chemistry B, 2009, 113, 16409-16419.	2.6	73
67	Multidimensional spectroscopy of \hat{l}^2 -carotene: Vibrational cooling in the excited state. Archives of Biochemistry and Biophysics, 2009, 483, 219-223.	3.0	45
68	Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy. Optics Letters, 2009, 34, 3301.	3.3	41
69	Coherent control of the efficiency of an artificial light-harvesting complex. Springer Series in Chemical Physics, 2009, , 454-456.	0.2	Ο
70	Early Time Vibrationally Hot Ground-State Dynamics in β-Carotene Investigated with Pump-Degenerate Four-Wave Mixing (Pump-DFWM). Springer Series in Chemical Physics, 2009, , 442-444.	0.2	0
71	Coherent control of matter waves passing through a conical intersection in β-carotene. Springer Series in Chemical Physics, 2009, , 436-438.	0.2	0
72	Control of Excited-State Population and Vibrational Coherence with Shaped-Resonant and Near-Resonant Excitation. Springer Series in Chemical Physics, 2009, , 460-462.	0.2	0

#	Article	IF	CITATIONS
73	Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in β-carotene. Chemical Physics, 2008, 350, 220-229.	1.9	35
74	Ultrafast Energy Transfer Dynamics of a Bioinspired Dyad Molecule. Journal of Physical Chemistry B, 2008, 112, 2678-2685.	2.6	21
75	Controlling the efficiency of an artificial light-harvesting complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7641-7646.	7.1	67
76	Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 074024.	1.5	31
77	Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6888-6893.	7.1	41
78	Pump-Degenerate Four Wave Mixing as a Technique for Analyzing Structural and Electronic Evolution:Â Multidimensional Time-Resolved Dynamics near a Conical Intersection. Journal of Physical Chemistry A, 2007, 111, 10517-10529.	2.5	75
79	The photoinduced cleavage of coumarin dimers studied with femtosecond and nanosecond two-photon excitation. Chemical Physics Letters, 2007, 439, 308-312.	2.6	15
80	Enhancement of Raman Modes in Complex Molecules by Coherent Control. Springer Series in Chemical Physics, 2007, , 303-305.	0.2	1
81	Enhancement of Raman modes by coherent control in β-carotene. Chemical Physics Letters, 2006, 421, 523-528.	2.6	58
82	Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry. Journal of Chemical Physics, 2006, 125, 061101.	3.0	38
83	Enhancement of Raman Modes in Complex Molecules by Coherent Control. , 2006, , .		0