Juergen Hauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685767/publications.pdf

Version: 2024-02-01

147801 197818 2,483 83 31 49 h-index citations g-index papers 85 85 85 2019 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum biology revisited. Science Advances, 2020, 6, eaaz4888.	10.3	266
2	Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nature Communications, 2015, 6, 7755.	12.8	129
3	High Frequency Vibrational Modulations in Two-Dimensional Electronic Spectra and Their Resemblance to Electronic Coherence Signatures. Journal of Physical Chemistry B, 2011, 115, 5383-5391.	2.6	97
4	Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J-Aggregates. Journal of Physical Chemistry A, 2013, 117, 6007-6014.	2.5	88
5	Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New Journal of Physics, 2013, 15, 085016.	2.9	82
6	System-Dependent Signatures of Electronic and Vibrational Coherences in Electronic Two-Dimensional Spectra. Journal of Physical Chemistry Letters, 2012, 3, 1497-1502.	4.6	80
7	Pump-Degenerate Four Wave Mixing as a Technique for Analyzing Structural and Electronic Evolution:Â Multidimensional Time-Resolved Dynamics near a Conical Intersection. Journal of Physical Chemistry A, 2007, 111, 10517-10529.	2.5	75
8	Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1627-1640.	1.0	74
9	Two-Dimensional Electronic Spectroscopy of \hat{l}^2 -Carotene. Journal of Physical Chemistry B, 2009, 113, 16409-16419.	2.6	73
10	Hole-mediated photoredox catalysis: tris(<i>p</i> -substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Organic Chemistry Frontiers, 2021, 8, 1132-1142.	4.5	72
11	Controlling the efficiency of an artificial light-harvesting complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7641-7646.	7.1	67
12	Entrapped Molecular Photocatalyst and Photosensitizer in Metal–Organic Framework Nanoreactors for Enhanced Solar CO ₂ Reduction. ACS Catalysis, 2021, 11, 871-882.	11.2	65
13	Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations. Journal of Chemical Physics, 2010, 133, 094505.	3.0	61
14	A Unified Picture of S* in Carotenoids. Journal of Physical Chemistry Letters, 2016, 7, 3347-3352.	4.6	59
15	Enhancement of Raman modes by coherent control in \hat{l}^2 -carotene. Chemical Physics Letters, 2006, 421, 523-528.	2.6	58
16	Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. Journal of Chemical Physics, 2010, 132, .	3.0	55
17	Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 10893-10909.	2.5	51
18	Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model. Journal of Physical Chemistry A, 2010, 114, 8179-8189.	2.5	49

#	Article	IF	CITATIONS
19	Electronic Double-Quantum Coherences and Their Impact on Ultrafast Spectroscopy: The Example of \hat{l}^2 -Carotene. Journal of Physical Chemistry Letters, 2010, 1, 3366-3370.	4.6	49
20	Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2012, 136, 204503.	3.0	49
21	Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. Journal of Chemical Physics, 2015, 142, 212434.	3.0	48
22	Multidimensional spectroscopy of \hat{l}^2 -carotene: Vibrational cooling in the excited state. Archives of Biochemistry and Biophysics, 2009, 483, 219-223.	3.0	45
23	Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6888-6893.	7.1	41
24	Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy. Optics Letters, 2009, 34, 3301.	3.3	41
25	Electronic ground state conformers of \hat{l}^2 -carotene and their role in ultrafast spectroscopy. Chemical Physics Letters, 2011, 506, 122-127.	2.6	40
26	The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chemical Science, 2019, 10, 4792-4804.	7.4	40
27	Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry. Journal of Chemical Physics, 2006, 125, 061101.	3.0	38
28	Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in \hat{l}^2 -carotene. Chemical Physics, 2008, 350, 220-229.	1.9	35
29	Distinguishing Electronic and Vibronic Coherence in 2D Spectra by Their Temperature Dependence. Journal of Physical Chemistry Letters, 2014, 5, 404-407.	4.6	35
30	Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids. Physical Chemistry Chemical Physics, 2015, 17, 19491-19499.	2.8	34
31	Finite pulse effects in single and double quantum spectroscopies. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 430.	2.1	33
32	Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 074024.	1.5	31
33	Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer. Optics Express, 2017, 25, A483.	3.4	31
34	Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state. Chemical Physics, 2009, 357, 181-187.	1.9	28
35	Precise phasing of 2D-electronic spectra in a fully non-collinear phase-matching geometry. Optics Express, 2013, 21, 15904.	3.4	25
36	Anharmonic vibrational effects in linear and two-dimensional electronic spectra. Physical Chemistry Chemical Physics, 2017, 19, 24752-24760.	2.8	25

#	Article	IF	CITATIONS
37	Explaining the Temperature Dependence of Spirilloxanthin's S* Signal by an Inhomogeneous Ground State Model. Journal of Physical Chemistry A, 2013, 117, 6303-6310.	2.5	22
38	Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach. Optics Express, 2018, 26, 2270.	3.4	22
39	Ultrafast Energy Transfer Dynamics of a Bioinspired Dyad Molecule. Journal of Physical Chemistry B, 2008, 112, 2678-2685.	2.6	21
40	Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research, 2018, 135, 45-54.	2.9	20
41	Annihilation Dynamics of Molecular Excitons Measured at a Single Perturbative Excitation Energy. Journal of Physical Chemistry Letters, 2020, 11, 7776-7781.	4.6	17
42	Single-molecule excitation–emission spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4064-4069.	7.1	16
43	Reduced Molecular Flavins as Single-Electron Reductants after Photoexcitation. Journal of the American Chemical Society, 2022, 144, 4721-4726.	13.7	16
44	The photoinduced cleavage of coumarin dimers studied with femtosecond and nanosecond two-photon excitation. Chemical Physics Letters, 2007, 439, 308-312.	2.6	15
45	Ultrafast multiphoton transient absorption of \hat{I}^2 -carotene. Chemical Physics, 2010, 373, 38-44.	1.9	15
46	Activation of 2â€Cyclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angewandte Chemie - International Edition, 2021, 60, 10155-10163.	13.8	15
47	A General control mechanism of energy flow in the excited state of polyenic biochromophores. Faraday Discussions, 2011, 153, 213.	3.2	13
48	Interplay of exciton annihilation and transport in fifth order electronic spectroscopy. Chemical Physics, 2020, 528, 110433.	1.9	13
49	Recent advances of multiphoton absorption in metal–organic frameworks. Journal of Materials Chemistry C, 2022, 10, 6912-6934.	5.5	12
50	On the paradigm of coherent control: the phase-dependent light–matter interaction in the shaping window. New Journal of Physics, 2009, 11, 105049.	2.9	11
51	The central role of the metal ion for photoactivity: Zn– vs. Ni–Mabiq. Chemical Science, 2021, 12, 7521-7532.	7.4	11
52	A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy. Vibrational Spectroscopy, 2016, 85, 167-174.	2.2	10
53	Intraband dynamics and exciton trapping in the LH2 complex of Rhodopseudomonas acidophila. Journal of Chemical Physics, 2021, 154, 045102.	3.0	9
54	Effects of tunable excitation in carotenoids explained by the vibrational energy relaxation approach. Photosynthesis Research, 2018, 135, 55-64.	2.9	8

#	Article	IF	Citations
55	A nitrophenyl-carbazole based push-pull linker as a building block for non-linear optical active coordination polymers: A structural and photophysical study. Dyes and Pigments, 2021, 186, 109012.	3.7	8
56	Dynamics of quantum wave packets in complex molecules traced by 2D coherent electronic correlation spectroscopy. Procedia Chemistry, 2011, 3, 105-117.	0.7	5
57	Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads. Frontiers in Chemistry, 2020, 8, 579166.	3.6	5
58	Activation of 2â€Cyclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angewandte Chemie, 2021, 133, 10243-10251.	2.0	5
59	Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach. Journal of Physical Chemistry B, 2022, 126, 3985-3994.	2.6	5
60	Time-domain photocurrent spectroscopy based on a common-path birefringent interferometer. Review of Scientific Instruments, 2020, 91, 123101.	1.3	4
61	Operando Study of Structure Degradation in Solidâ€State Dyeâ€Sensitized Solar Cells with a TiO ₂ Photoanode Having Ordered Mesopore Arrays. Solar Rrl, 2022, 6, .	5.8	4
62	Achromatic frequency doubling of supercontinuum pulses for transient absorption spectroscopy. Optics Express, 2021, 29, 39042.	3.4	3
63	Correlated spectral fluctuations quantified by line shape analysis of fifth-order two-dimensional electronic spectra. Journal of Chemical Physics, 2022, 156, 084114.	3.0	3
64	Simulations of pump probe spectra of a molecular complex at high excitation intensity. Chemical Physics, 2019, 527, 110458.	1.9	2
65	Ultrafast bi-excitonic dynamics and annihilation in molecular and mesoscopic systems. EPJ Web of Conferences, 2019, 205, 06013.	0.3	2
66	Enhancement of Raman Modes in Complex Molecules by Coherent Control. Springer Series in Chemical Physics, 2007, , 303-305.	0.2	1
67	Visible Two-Dimensional Spectroscopy with sub-7 fs Pulses Uncovers Ultrafast Electron-Phonon Coupling Dynamics. , 2010, , .		0
68	Two-Dimensional Electronic Spectroscopy for Vibrational Wavepacket Analysis and Electronic Structure Determination. , 2012, , .		0
69	Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy. EPJ Web of Conferences, 2013, 41, 08019.	0.3	0
70	Simulating exciton migration and annihilation dynamics in higher order spectroscopies of a molecular trimer. EPJ Web of Conferences, 2019, 205, 06016.	0.3	0
71	Exciton-Exciton Annihilation as a Mechanism for Uphill Transfer in a Molecular Excitonic System. EPJ Web of Conferences, 2019, 205, 06017.	0.3	0
72	Single-Molecule Excitation-Emission Spectroscopy at Room Temperature Based on a Common-Path Interferometer. , 2019, , .		0

#	Article	IF	Citations
73	Magnetic pulses enable multidimensional optical spectroscopy of dark states. Journal of Chemical Physics, 2020, 152, 084201.	3.0	0
74	Enhancement of Raman Modes in Complex Molecules by Coherent Control., 2006,,.		0
75	Coherent control of the efficiency of an artificial light-harvesting complex. Springer Series in Chemical Physics, 2009, , 454-456.	0.2	O
76	Early Time Vibrationally Hot Ground-State Dynamics in \hat{l}^2 -Carotene Investigated with Pump-Degenerate Four-Wave Mixing (Pump-DFWM). Springer Series in Chemical Physics, 2009, , 442-444.	0.2	0
77	Coherent control of matter waves passing through a conical intersection in \hat{l}^2 -carotene. Springer Series in Chemical Physics, 2009, , 436-438.	0.2	O
78	Control of Excited-State Population and Vibrational Coherence with Shaped-Resonant and Near-Resonant Excitation. Springer Series in Chemical Physics, 2009, , 460-462.	0.2	0
79	Coherent Multidimensional Spectroscopies Refine the Energy Level Scheme of \hat{I}^2 -carotene. , 2010, , .		O
80	Coherent Control for Molecular Ultrafast Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 37-55.	0.3	0
81	The Role of Nuclear Modes in Coupled Electronic Systems: Quantum Coating, Vibronic Modulation, or Quantum-Dissipative Energy Flow?. , 2011 , , .		O
82	Excitation-Emission Fluorescence Spectroscopy with Single Molecule Sensitivity Using a Common-Path Interferometer. , 2018, , .		0
83	Molecular annihilation dynamics measured in the perturbative regime of excitation. , 2020, , .		O