
Claudiana Lameu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting Flubendazole Through Nanocrystal Technology:ÂStatisticalÂDesign, Characterization and Its Potential Inhibitory Effect on Xenografted Lung Tumor Progression in Mice. Journal of Cluster Science, 2023, 34, 261-272.	1.7	4
2	Complex diseases demand novel treatment strategies: understanding drug combination. Drug Combination Therapy, 2022, 4, 6.	0.0	1
3	ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington's disease: a novel approach for cell clock research. Molecular Psychiatry, 2021, 26, 2633-2650.	4.1	24
4	Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry, 2021, 26, 1044-1059.	4.1	104
5	Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide - Biology and Chemistry, 2021, 111-112, 64-71.	1.2	41
6	Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor. Cells, 2021, 10, 1782.	1.8	15
7	The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Reviews and Reports, 2020, 16, 288-300.	1.7	30
8	Insights in Chloroquine Action: Perspectives and Implications in Malaria and <scp>COVID</scp> â€19. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 872-881.	1.1	10
9	The P2X7 Receptor: Central Hub of Brain Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 124.	1.4	87
10	Using Cytometry for Investigation of Purinergic Signaling in Tumorâ€Associated Macrophages. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1109-1126.	1.1	5
11	Combination of Chemical and Neurotrophin Stimulation Modulates Neurotransmitter Receptor Expression and Activity in Transdifferentiating Human Adipose Stromal Cells. Stem Cell Reviews and Reports, 2019, 15, 851-863.	1.7	5
12	Calcium signalling: A common target in neurological disorders and neurogenesis. Seminars in Cell and Developmental Biology, 2019, 95, 25-33.	2.3	42
13	Kinin-B2 Receptor Activity in Skeletal Muscle Regeneration and Myoblast Differentiation. Stem Cell Reviews and Reports, 2019, 15, 48-58.	5.6	11
14	Where do we aspire to publish? A position paper on scientific communication in biochemistry and molecular biology. Brazilian Journal of Medical and Biological Research, 2019, 52, e8935.	0.7	1
15	Stem cell contributions to neurological disease modeling and personalized medicine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 54-62.	2.5	15
16	Aptamers: novelty tools for cancer biology. Oncotarget, 2018, 9, 26934-26953.	0.8	34
17	Kinin and Purine Signaling Contributes to Neuroblastoma Metastasis. Frontiers in Pharmacology, 2018, 9, 500.	1.6	42
18	Bradykinin promotes neuron-generating division of neural progenitor cells via ERK activation. Journal of Cell Science, 2016, 129, 3437-48.	1.2	26

Claudiana Lameu

#	Article	IF	CITATIONS
19	Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation. Development (Cambridge), 2016, 143, e1.1-e1.1.	1.2	0
20	Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Molecular Cancer, 2015, 14, 201.	7.9	48
21	Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor. PLoS ONE, 2014, 9, e96281.	1.1	82
22	A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2013, 19, 28.	0.8	10
23	Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 76-89.	1.1	125
24	Proline rich-oligopeptides: Diverse mechanisms for antihypertensive action. Peptides, 2013, 48, 124-133.	1.2	30
25	Applications of Snake Venom Proline-Rich Oligopeptides (Bj- PROs) in Disease Conditions Resulting from Deficient Nitric Oxide Production. , 2013, , .		2
26	Interactions between the NO-Citrulline Cycle and Brain-derived Neurotrophic Factor in Differentiation of Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 29690-29701.	1.6	30
27	Kinin-B2 Receptor Activity Determines the Differentiation Fate of Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 44046-44061.	1.6	41
28	Regulation of neurogenesis and gliogenesis of retinoic acidâ€induced P19 embryonal carcinoma cells by P2X2 and P2X7 receptors studied by RNA interference. International Journal of Developmental Neuroscience, 2012, 30, 91-97.	0.7	27
29	Apoptotic signaling of the Amblyominâ€X involves endoplasmic reticulum stress, cell cycle regulation and survival pathways. FASEB Journal, 2012, 26, 798.25.	0.2	0
30	Bothrops jararaca Peptide with Anti-Hypertensive Action Normalizes Endothelium Dysfunction Involved in Physiopathology of Preeclampsia. PLoS ONE, 2011, 6, e23680.	1.1	10
31	Infection with Leishmania amazonensis upregulates purinergic receptor expression and induces host-cell susceptibility to UTP-mediated apoptosis. Cellular Microbiology, 2011, 13, 1410-1428.	1.1	36
32	Bj-PRO-5a, a natural angiotensin-converting enzyme inhibitor, promotes vasodilatation mediated by both bradykinin B2 and M1 muscarinic acetylcholine receptors. Biochemical Pharmacology, 2011, 81, 736-742.	2.0	31
33	Directed Differentiation of Neural Progenitors into Neurons Is Accompanied by Altered Expression of P2X Purinergic Receptors. Journal of Molecular Neuroscience, 2011, 44, 141-146.	1.1	27
34	The snake venom peptide <i>Bj</i> â€PROâ€7a is a M1 muscarinic acetylcholine receptor agonist. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 77-83.	1.1	22
35	Enhancement of the citrulline–nitric oxide cycle in astroglioma cells by the proline-rich peptide-10c from Bothrops jararaca venom. Brain Research, 2010, 1363, 11-19.	1.1	16
36	The central nervous system as target for antihypertensive actions of a prolineâ€rich peptide from <i>Bothrops jararaca</i> venom. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 220-230.	1.1	14

CLAUDIANA LAMEU

#	Article	IF	CITATIONS
37	Brain nitric oxide production by a proline-rich decapeptide from Bothrops jararaca venom improves baroreflex sensitivity of spontaneously hypertensive rats. Hypertension Research, 2010, 33, 1283-1288.	1.5	19
38	Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-hypertensive Peptide. Journal of Biological Chemistry, 2009, 284, 20022-20033.	1.6	66
39	L-Arginine Signalling Potential in the Brain: The Peripheral Gets Central. Recent Patents on CNS Drug Discovery, 2009, 4, 137-142.	0.9	12
40	Multiple effects of sibutramine on ejaculation and on vas deferens and seminal vesicle contractility. Toxicology and Applied Pharmacology, 2009, 239, 233-240.	1.3	19
41	A novel physiological property of snake bradykinin-potentiating peptides—Reversion of MK-801 inhibition of nicotinic acetylcholine receptors. Peptides, 2008, 29, 1708-1715.	1.2	14
42	Tissue distribution in mice of BPP 10c, a potent proline-rich anti-hypertensive peptide of Bothrops jararaca. Toxicon, 2008, 51, 515-523.	0.8	23
43	Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure–function relationship of BPPs. Biochemical Pharmacology, 2007, 74, 1350-1360.	2.0	32
44	Venom Bradykinin-Related Peptides (BRPs) and Its Multiple Biological Roles. , 0, , .		4

Venom Bradykinin-Related Peptides (BRPs) and Its Multiple Biological Roles. , 0, , . 44

4