Wolfgang Blenau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PaOctl ² 2R: Identification and Functional Characterization of an Octopamine Receptor Activating Adenylyl Cyclase Activity in the American Cockroach Periplaneta americana. International Journal of Molecular Sciences, 2022, 23, 1677.	4.1	4
2	AmOctα2R: Functional Characterization of a Honeybee Octopamine Receptor Inhibiting Adenylyl Cyclase Activity. International Journal of Molecular Sciences, 2020, 21, 9334.	4.1	14
3	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: justification of study design and statistical analysis. Ecotoxicology, 2018, 27, 8-11.	2.4	1
4	AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity. Insect Biochemistry and Molecular Biology, 2017, 80, 91-100.	2.7	34
5	Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster. Frontiers in Systems Neuroscience, 2017, 11, 28.	2.5	23
6	PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. International Journal of Molecular Sciences, 2017, 18, 2279.	4.1	12
7	Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell and Tissue Research, 2016, 366, 163-174.	2.9	6
8	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology, 2016, 25, 1691-1701.	2.4	43
9	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). Ecotoxicology, 2016, 25, 1648-1665.	2.4	52
10	Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nature Communications, 2016, 7, 10165.	12.8	184
11	Neuronally produced versican V2 renders Câ€fiber nociceptors <scp>IB</scp> ₄ â€positive. Journal of Neurochemistry, 2015, 134, 147-155.	3.9	12
12	Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry. PLoS ONE, 2015, 10, e0125068.	2.5	27
13	Cockroach GABAB receptor subtypes: Molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology, 2015, 88, 134-144.	4.1	22
14	Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana. International Journal of Molecular Sciences, 2014, 15, 629-653.	4.1	21
15	The role of serotonin in feeding and gut contractions in the honeybee. Journal of Insect Physiology, 2014, 61, 8-15.	2.0	79
16	Suitability of three common reference genes for quantitative real-time PCR in honey bees. Apidologie, 2013, 44, 342-350.	2.0	54
17	Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera). PLoS ONE, 2013, 8, e82407.	2.5	35
18	Characterization of a Ca2+/calmodulin-dependent AC1 adenylyl cyclase in a non-neuronal tissue, the blowfly salivary gland. Cell Calcium, 2012, 52, 103-112.	2.4	5

WOLFGANG BLENAU

#	Article	IF	CITATIONS
19	Intracellular pH regulation in unstimulated <i>Calliphora</i> salivary glands is Na+ dependent and requires V-ATPase activity. Journal of Experimental Biology, 2012, 215, 1337-1345.	1.7	2
20	Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets?. Apidologie, 2012, 43, 334-347.	2.0	85
21	Molecular and Pharmacological Characterization of Serotonin 5-HT2α and 5-HT7 Receptors in the Salivary Clands of the Blowfly Calliphora vicina. PLoS ONE, 2012, 7, e49459.	2.5	38
22	Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies. Lessons from Drosophila melanogaster and Apis mellifera. Arthropod Structure and Development, 2011, 40, 381-394.	1.4	97
23	Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cellular and Molecular Life Sciences, 2010, 67, 2467-2479.	5.4	90
24	The cloning, phylogenetic relationship and distribution pattern of two new putative GPCR-type octopamine receptors in the desert locust (Schistocerca gregaria). Journal of Insect Physiology, 2010, 56, 868-875.	2.0	38
25	The role of octopamine in locusts and other arthropods. Journal of Insect Physiology, 2010, 56, 854-867.	2.0	142
26	Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5â€HT ₁ receptor. British Journal of Pharmacology, 2010, 159, 1450-1462.	5.4	30
27	Biogenic Amines. , 2009, , 80-82.		2
28	Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands. Journal of Experimental Biology, 2009, 212, 126-136.	1.7	11
29	Vâ€ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C. Archives of Insect Biochemistry and Physiology, 2009, 71, 130-138.	1.5	7
30	Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience, 2009, 162, 1120-1133.	2.3	51
31	Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A. American Journal of Physiology - Cell Physiology, 2008, 294, C56-C65.	4.6	49
32	Pharmacology of serotonin-induced salivary secretion in Periplaneta americana. Journal of Insect Physiology, 2007, 53, 774-781.	2.0	15
33	A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 2006, 80, 1-19.	5.7	279
34	Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). Journal of Neurochemistry, 2006, 98, 1985-1998.	3.9	63
35	The aminergic control of cockroach salivary glands. Archives of Insect Biochemistry and Physiology, 2006, 62, 141-152.	1.5	55
36	Aminergic Control and Modulation of Honeybee Behaviour. Current Neuropharmacology, 2006, 4, 259-276.	2.9	137

WOLFGANG BLENAU

#	Article	IF	CITATIONS
37	Protein secretion in cockroach salivary glands requires an increase in intracellular cAMP and Ca2+ concentrations. Journal of Insect Physiology, 2005, 51, 1083-1091.	2.0	15
38	Developmental expression of a tyramine receptor gene in the brain of the honey bee,Apis mellifera. Journal of Comparative Neurology, 2005, 483, 66-75.	1.6	44
39	Molecular characterization of theebony gene from the American cockroach,Periplaneta americana. Archives of Insect Biochemistry and Physiology, 2005, 59, 184-195.	1.5	10
40	Preface: Cellular actions of biogenic amines. Archives of Insect Biochemistry and Physiology, 2005, 59, 99-102.	1.5	10
41	The effects of dopamine receptor agonists and antagonists on the secretory rate of cockroach (Periplaneta americana) salivary glands. Journal of Insect Physiology, 2004, 50, 821-830.	2.0	32
42	Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. Journal of Neurochemistry, 2003, 86, 725-735.	3.9	162
43	Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activity. Molecular Brain Research, 2003, 113, 67-77.	2.3	89
44	Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behavioural Brain Research, 2002, 136, 545-553.	2.2	190
45	Molecular and pharmacological properties of insect biogenic amine receptors: Lessons fromDrosophila melanogaster andApis mellifera. Archives of Insect Biochemistry and Physiology, 2001, 48, 13-38.	1.5	336
46	Amtyr1. Journal of Neurochemistry, 2000, 74, 900-908.	3.9	154
47	Neurons with dopamine-like immunoreactivity target mushroom body Kenyon cell somata in the brain of some hymenopteran insects. Arthropod Structure and Development, 1999, 28, 203-210.	0.4	24
48	Behavioural pharmacology of dopamine, serotonin and putative aminergic ligands in the mushroom bodies of the honeybee (Apis mellifera). Behavioural Brain Research, 1998, 96, 115-124.	2.2	48
49	Characterization of a Dopamine D1 Receptor from <i>Apis mellifera:</i> Cloning, Functional Expression, Pharmacology, and mRNA Localization in the Brain. Journal of Neurochemistry, 1998, 70, 15-23.	3.9	136
50	Characterization of [3H]LSD binding to a serotonin-sensitive site in honeybee (Apis mellifera) brain. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 377-384.	1.6	15