
William Gillin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waferâ€Scale Graphene Anodes Replace Indium Tin Oxide in Organic Lightâ€Emitting Diodes (Advanced) Tj ETQq	1,1,0.7843 3.6	3]4 rgBT /℃
2	Waferâ€Scale Graphene Anodes Replace Indium Tin Oxide in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101675.	3.6	11
3	Enhanced 1.54 μm luminescence of a perfluorinated erbium complex sensitized by perfluorinated Pt(<scp>ii</scp>) and Zn(<scp>ii</scp>) phthalocyanines with 980 nm emission. Journal of Materials Chemistry C, 2021, 9, 456-465.	2.7	6
4	Understanding asymmetric magnetoconductance in OLEDs: The effects of gradient magnetic fields. Organic Electronics, 2021, , 106251.	1.4	0
5	Manipulation of Molecular Vibrations on Condensing Er3+ State Densities for 1.5 μm Application. Journal of Physical Chemistry Letters, 2021, 12, 9620-9625.	2.1	1
6	Bright and Efficient Sensitized Near-Infrared Photoluminescence from an Organic Neodymium-Containing Composite Material System. Journal of the American Chemical Society, 2021, 143, 17915-17919.	6.6	3
7	Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. Materials, 2021, 14, 7827.	1.3	3
8	Aluminum promoted sulfidation of ammonium perrhenate: Presence of nanobattery in the ReS2 composite material based memcapacitor. Chemical Engineering Journal, 2020, 392, 123745.	6.6	5
9	Fitting the magnetoresponses of the OLED using polaron pair model to obtain spin-pair dynamics and local hyperfine fields. Scientific Reports, 2020, 10, 16806.	1.6	13
10	Experimental Studies on the Dynamic Memcapacitance Modulation of the ReO3@ReS2 Composite Material-Based Diode. Nanomaterials, 2020, 10, 2103.	1.9	4
11	Enhanced 1.54-μm photo- and electroluminescence based on a perfluorinated Er(III) complex utilizing an iridium(III) complex as a sensitizer. Light: Science and Applications, 2020, 9, 32.	7.7	19
12	Prolonged and efficient near-infrared photoluminescence of a sensitized organic ytterbium-containing molecular composite. Journal of Materials Chemistry C, 2020, 8, 9502-9505.	2.7	5
13	Experimental studies on the conduction mechanism and electrical properties of the inverted Ba doped ZnO nanoparticles based memristor. Applied Physics Letters, 2019, 115, 073505.	1.5	6
14	Modelling and fitting the Polaron Pair Magnetoconductance model to obtain a realistic local hyperfine field in Tris-(8-hydroxyquinoline)aluminium based diodes. Scientific Reports, 2019, 9, 3439.	1.6	5
15	High sensitization efficiency and energy transfer routes for population inversion at low pump intensity in Er organic complexes for IR amplification. Scientific Reports, 2018, 8, 3226.	1.6	8
16	Continuous Tuning of Organic Phosphorescence by Diluting Triplet Diffusion at the Molecular Level. Journal of Physical Chemistry Letters, 2018, 9, 2022-2024.	2.1	4
17	Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. Journal of Materials Chemistry C, 2018, 6, 1815-1821.	2.7	129
18	Room temperature synthesis of ReS ₂ through aqueous perrhenate sulfidation. Journal of Physics Condensed Matter, 2018, 30, 055702.	0.7	4

#	Article	IF	CITATIONS
19	Type-II InAs/GaAsSb Quantum Dot Solar Cells With GaAs Interlayer. IEEE Journal of Photovoltaics, 2018, 8, 741-745.	1.5	22
20	Enhancing the sensitization efficiency of erbium doped organic complexes by heavy halogen substitution. Journal of Materials Chemistry C, 2018, 6, 7012-7017.	2.7	3
21	Carbon Nanotubeâ€Quantum Dot Nanohybrids: Coupling with Singleâ€Particle Control in Aqueous Solution. Small, 2017, 13, 1603042.	5.2	22
22	Functionalisation of ligands through click chemistry: long-lived NIR emission from organic Er(<scp>iii</scp>) complexes with a perfluorinated core and a hydrogen-containing shell. RSC Advances, 2017, 7, 128-131.	1.7	15
23	Sensitization, energy transfer and infra-red emission decay modulation in Yb3+-doped NaYF4 nanoparticles with visible light through a perfluoroanthraquinone chromophore. Scientific Reports, 2017, 7, 5066.	1.6	17
24	Hole-exciton interaction induced high field decay of magneto-electroluminescence in Alq3-based organic light-emitting diodes at room temperature. Applied Physics Letters, 2016, 108, .	1.5	11
25	Impurity effects on charge transport and magnetoconductance in a single layer poly(3-hexyl-thiophene) device. Applied Physics Letters, 2016, 108, 203301.	1.5	1
26	Solution processed SnO ₂ :Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. Journal of Materials Chemistry C, 2016, 4, 3563-3570.	2.7	49
27	Solution-Processable Carbon Nanoelectrodes for Single-Molecule Investigations. Journal of the American Chemical Society, 2016, 138, 2905-2908.	6.6	26
28	Synthesis, Characterization, and Application of Core–Shell Co _{0.16} Fe _{2.84} O ₄ @NaYF ₄ (Yb, Er) and Fe ₃ O ₄ @NaYF ₄ (Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT,) Tj E	TQq0 ¹ 00 0 r	gB 1 7Overlock
29	Field-induced single-ion magnetic behaviour in a highly luminescent Er3+ complex. Materials Chemistry and Physics, 2015, 160, 429-434.	2.0	3
30	Organic Chromophores-Based Sensitization of NIR-Emitting Lanthanides. Fundamental Theories of Physics, 2015, , 1-100.	0.1	9
31	Annealing and doping-dependent magnetoresistance in single layer poly(3-hexyl-thiophene) organic semiconductor device. Organic Electronics, 2015, 17, 51-56.	1.4	4
32	Ferromagnetic-organic interfacial states and their role on low voltage current injection in tris-8-hydroxyquinloline (Alq3) organic spin valves. Applied Physics Letters, 2014, 105, 203301.	1.5	1
33	Understanding the role of electron and hole trions on current transport in aluminium tris(8-hydroxyquinoline) using organic magnetoresistance. Applied Physics Letters, 2014, 104, 043307.	1.5	1
34	The importance of holes in aluminium tris-8-hydroxyquinoline (Alq3) devices with Fe and NiFe contacts. Applied Physics Letters, 2014, 104, 013303.	1.5	4
35	Organo-erbium systems for optical amplification at telecommunications wavelengths. Nature Materials, 2014, 13, 382-386.	13.3	120
36	Electronic and magnetic properties of the interface between metal-quinoline molecules and cobalt. Physical Review B, 2014, 89, .	1.1	41

#	Article	IF	CITATIONS
37	Concentration dependence of the up- and down-conversion emission colours of Er ³⁺ -doped Y ₂ O ₃ : a time-resolved spectroscopy analysis. Physical Chemistry Chemical Physics, 2014, 16, 20957-20963.	1.3	33
38	Visible-Range Sensitization of Er ³⁺ -Based Infrared Emission from Perfluorinated 2-Acylphenoxide Complexes. Journal of Physical Chemistry Letters, 2014, 5, 1560-1563.	2.1	15
39	The transition from bipolaron to triplet-polaron magnetoresistance in a single layer organic semiconductor device. Organic Electronics, 2014, 15, 1711-1716.	1.4	7
40	An organic multilevel non-volatile memory device based on multiple independent switching modes. Organic Electronics, 2014, 15, 1983-1989.	1.4	15
41	Effect of Fluorination on the Radiative Properties of Er3+ Organic Complexes: An Opto-Structural Correlation Study. Journal of Physical Chemistry C, 2013, 117, 23970-23975.	1.5	32
42	Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors. Physical Review Letters, 2013, 110, 216602.	2.9	62
43	Efficient sensitized emission in Yb(iii) pentachlorotropolonate complexes. Chemical Communications, 2013, 49, 1933.	2.2	27
44	Low temperature magnetic field effects on the efficiency of aluminium tris(8-hydroxyquinoline) based organic light emitting diodes in the absence of magnetoresistance. Synthetic Metals, 2013, 173, 46-50.	2.1	2
45	A Singleâ€Device Universal Logic Gate Based on a Magnetically Enhanced Memristor. Advanced Materials, 2013, 25, 534-538.	11.1	95
46	Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. Journal of Applied Physics, 2013, 113, .	1.1	53
47	Luminescent Zinc(II) Complexes of Fluorinated Benzothiazol-2-yl Substituted Phenoxide and Enolate Ligands. Inorganic Chemistry, 2013, 52, 1379-1387.	1.9	40
48	Modeling of positive and negative organic magnetoresistance in organic light-emitting diodes. Physical Review B, 2012, 86, .	1.1	24
49	The role of interfaces in organic spin valves revealed through spectroscopic and transport measurements. Physica Status Solidi (B): Basic Research, 2012, 249, 9-17.	0.7	15
50	Ambipolar Charge Transport in "Traditional―Organic Hole Transport Layers. Advanced Materials, 2012, 24, 2278-2283.	11.1	20
51	Efficient white light emission by upconversion in Yb3+-, Er3+- and Tm3+-doped Y2BaZnO5. Chemical Communications, 2011, 47, 6263.	2.2	63
52	Importance of intramolecular electron spin relaxation in small molecule semiconductors. Physical Review B, 2011, 84, .	1.1	20
53	Oxide phosphors for light upconversion; Yb3+ and Tm3+ co-doped Y2BaZnO5. Journal of Applied Physics, 2011, 109, .	1.1	54
54	Efficient oxide phosphors for light upconversion; green emission from Yb ³⁺ and Ho ³⁺ co-doped Ln ₂ BaZnO ₅ (Ln = Y, Gd). Journal of Materials Chemistry, 2011, 21, 1387-1394.	6.7	99

#	Article	IF	CITATIONS
55	Modelling of organic magnetoresistance as a function of temperature using the triplet polaron interaction. Synthetic Metals, 2011, 161, 628-631.	2.1	19
56	The effect of deuteration on organic magnetoresistance. Synthetic Metals, 2011, 161, 608-612.	2.1	11
57	Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nature Materials, 2011, 10, 39-44.	13.3	152
58	Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thinâ€Film Transistors. Advanced Functional Materials, 2011, 21, 525-531.	7.8	100
59	High-pressure study of non-radiative de-excitation mechanisms in perfluorinated organic erbium(III) phosphinates. Journal of Physics: Conference Series, 2010, 215, 012042.	0.3	0
60	The Effect of Injection Layers on a Room Temperature Organic Spin Valve. IEEE Transactions on Magnetics, 2010, 46, 1307-1310.	1.2	11
61	Sprayâ€Deposited Liâ€Doped ZnO Transistors with Electron Mobility Exceeding 50 cm ² /Vs. Advanced Materials, 2010, 22, 4764-4769.	11.1	105
62	Cooperative Infrared to Visible Up Conversion in Tb ³⁺ , Eu ³⁺ , and Yb ³⁺ Containing Polymers. Advanced Materials, 2010, 22, 5356-5360.	11.1	41
63	Determining the influence of excited states on current transport in organic light emitting diodes using magnetic field perturbation. Physical Review B, 2010, 82, .	1.1	36
64	Oxide phosphors for efficient light upconversion: Yb3+ and Er3+ co-doped Ln2BaZnO5 (Ln = Y, Gd). Journal of Materials Chemistry, 2010, 20, 3989.	6.7	106
65	Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor. Physical Review B, 2010, 82, .	1.1	45
66	Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline). Physical Review B, 2009, 80, .	1.1	50
67	Measurement of the intersystem crossing rate in aluminum tris(8-hydroxyquinoline) and its modulation by an applied magnetic field. Journal of Applied Physics, 2009, 106, 043511.	1.1	16
68	Erbium bis(pentafluorophenyl)phosphinate: a new hybrid material with unusually long-lived infrared luminescence. Journal of Materials Science: Materials in Electronics, 2009, 20, 430-434.	1.1	11
69	Direct measurement of the electronic spin diffusion length in a fully functional organic spinÂvalve by low-energy muon spin rotation. Nature Materials, 2009, 8, 109-114.	13.3	251
70	Spectroscopic study of Mq3 (M=Al, Ga, In, q=8-hydroxyquinolinate) at high pressure. Journal of Luminescence, 2009, 129, 1835-1839.	1.5	21
71	Nonradiative De-excitation Mechanisms in Long-Lived Erbium(III) Organic Compounds ErxY1-x[(p-CF3-C6F4)2PO2]3. Journal of Physical Chemistry B, 2009, 113, 7474-7481.	1.2	21
72	Influence of High Hydrostatic Pressure on Alq ₃ , Gaq ₃ , and Inq ₃ (q = 8-Hydroxyquinoline). Journal of Physical Chemistry B, 2009, 113, 14079-14086.	1.2	39

#	Article	IF	CITATIONS
73	Near IR luminescent rare earth 3,4,5,6-tetrafluoro-2-nitrophenoxide complexes: Synthesis, X-ray crystallography and spectroscopy. Polyhedron, 2008, 27, 1503-1510.	1.0	13
74	Improved electron injection into Alq3based devices using a thin Erq3injection layer. Journal Physics D: Applied Physics, 2008, 41, 085108.	1.3	3
75	The effect of applied magnetic field on photocurrent generation in poly-3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester photovoltaic devices. Journal of Physics Condensed Matter, 2008, 20, 452203.	0.7	25
76	Intrinsic Mobility Limit for Anisotropic Electron Transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Alq</mml:mi><mml:mn>3</mml:mn></mml:msub>. Physical Review Letters, 2008, 100, 116601.</mml:math 	2.9	27
77	Reduced hole mobility due to the presence of excited states in poly-(3-hexylthiophene). Applied Physics Letters, 2008, 93, 233306.	1.5	18
78	The magnetic field effect on the transport and efficiency of group III tris(8-hydroxyquinoline) organic light emitting diodes. Journal of Applied Physics, 2008, 103, 103715.	1.1	44
79	Evidence for erbium-erbium energy migration in erbium(III) bis(perfluoro-p-tolyl)phosphinate. Applied Physics Letters, 2008, 92, 103303.	1.5	15
80	Separating the roles of electrons and holes in the organic magnetoresistance of aluminum tris(8-hydroxyquinoline) organic light emitting diodes. Journal of Applied Physics, 2008, 104, 083703.	1.1	18
81	Magnetoresistance in triphenyl-diamine derivative blue organic light emitting devices. Journal of Applied Physics, 2008, 103, 043706.	1.1	21
82	Near-infrared photoluminescence of erbium tris(8-hydroxyquinoline) spin-coated thin films induced by low coherence light sources. Applied Physics Letters, 2007, 91, 021106.	1.5	23
83	The role of magnetic fields on the transport and efficiency of aluminum tris(8-hydroxyquinoline) based organic light emitting diodes. Journal of Applied Physics, 2007, 102, 073710.	1.1	79
84	Magnetoresistance in organic light-emitting diode structures under illumination. Physical Review B, 2007, 76, .	1.1	132
85	Characterization of interdiffusion around miscibility gap of lattice matched InGaAsâ^•InP quantum wells by high resolution x-ray diffraction. Journal of Applied Physics, 2007, 101, 013502.	1.1	2
86	Magnetoresistance and efficiency measurements ofAlq3-based OLEDs. Physical Review B, 2007, 75, .	1.1	284
87	Novel Infrared Emitter for Low Cost Optical Devices. , 2007, , .		0
88	<title>Photoluminescence relaxation kinetics in vapor etched porous silicon</title> ., 2006, 6344, 286.		0
89	Quenching of IR Luminescence of Erbium, Neodymium, and Ytterbium β-Diketonate Complexes by Ligand Câ°'H and Câ°'D Bonds. Journal of Physical Chemistry B, 2006, 110, 24476-24479.	1.2	71
90	Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications. Applied Physics Letters, 2006, 89, 111115.	1.5	95

#	Article	IF	CITATIONS
91	Concentration dependent interdiffusion in InGaAsâ^GaAs as evidenced by high resolution x-ray diffraction and photoluminescence spectroscopy. Journal of Applied Physics, 2005, 97, 013536.	1.1	8
92	Measurement of the size effect in the yield strength of nickel foils. Philosophical Magazine Letters, 2005, 85, 339-343.	0.5	36
93	Electroluminescence from5D0Â7FJand5D1Â7FJ(J= 0–4) transitions with a europium complex as emitter. Journal Physics D: Applied Physics, 2004, 37, 531-534.	1.3	14
94	Photoluminescence and x-ray diffraction studies of the diffusion behavior of lattice matched InGaAs/InP heterostructures. Journal of Applied Physics, 2003, 94, 988-992.	1.1	4
95	On the diffusion of lattice matched InGaAs/InP microstructures. Journal of Applied Physics, 2003, 93, 3881-3885.	1.1	18
96	Morphological study of aluminumtris(8-hydroxyquinoline) thin films using infrared and Raman spectroscopy. Journal of Applied Physics, 2002, 92, 1902-1905.	1.1	36
97	A new laser pain threshold model detects a faster onset of action from a liquid formulation of 1 g paracetamol than an equivalent tablet formulation. British Journal of Clinical Pharmacology, 2002, 53, 43-47.	1.1	7
98	Electroluminescence of organolanthanide based organic light emitting diodes. Current Opinion in Solid State and Materials Science, 2001, 5, 481-486.	5.6	57
99	Hybrid silicon-organic light-emitting diodes for $1.5 \cdot \hat{l}$ /4m optoelectronics. , 2001, 4105, 265.		0
100	980 nm electroluminescence from ytterbium tris(8-hydroxyquinoline). Organic Electronics, 2001, 2, 45-51.	1.4	67
101	1.5 μm electroluminescence from organic light emitting diodes integrated on silicon substrates. Optical Materials, 2001, 17, 161-163.	1.7	21
102	Organolanthanide-based infrared-light-emitting devices. , 2000, , .		0
103	Radiative recombination mechanisms in aluminum tris(8-hydroxyquinoline): Evidence for triplet exciton recombination. Journal of Applied Physics, 2000, 88, 781-785.	1.1	29
104	Silicon-based organic light-emitting diode operating at a wavelength of 1.5 μm. Applied Physics Letters, 2000, 77, 2271-2273.	1.5	67
105	Infra-red and visible electroluminescence from ErQ based OLEDs. Synthetic Metals, 2000, 111-112, 35-38.	2.1	37
106	Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline). Journal of Applied Physics, 2000, 88, 777-780.	1.1	90
107	Effect of strain on the interdiffusion of InGaAs/GaAs heterostructures. Journal of Applied Physics, 1999, 85, 790-793.	1.1	14
108	1.54 μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes. Applied Physics Letters, 1999, 75, 1380-1382.	1.5	177

#	Article	IF	CITATIONS
109	Erbium (III) tris(8-hydroxyquinoline) (ErQ): A potential material for silicon compatible 1.5 μm emitters. Applied Physics Letters, 1999, 74, 798-799.	1.5	128
110	The photoluminescence temperature dependence of aluminium tris(8-hydroxyquinoline) as a function of excitation energy. Materials Research Society Symposia Proceedings, 1999, 558, 421.	0.1	0
111	1.5 μm Luminescence from ErQ Based Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 1999, 558, 481.	0.1	1
112	1.5 νm Luminescence from ErQ based Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 1999, 561, 211.	0.1	0
113	Diffusion in semiconductors. Computational Materials Science, 1998, 11, 96-100.	1.4	8
114	Intermixing in GaAsSb/GaAs single quantum wells. Journal of Applied Physics, 1998, 84, 4017-4019.	1.1	20
115	Contactless electro-reflectance study of interdiffusion in heat-treated single quantum wells. Journal of Physics Condensed Matter, 1998, 10, 9865-9874.	0.7	6
116	Interdiffusion in InGaAs/GaAs: The effect of growth conditions. Journal of Applied Physics, 1998, 84, 232-236.	1.1	13
117	Evidence for Non-Equilibrium Vacancy Concentrations Controlling Interdiffusion in III-V Materials. Materials Research Society Symposia Proceedings, 1998, 527, 401.	0.1	0
118	Strong luminescence from erbium in Si/Si1–xGex/Si quantum well structures. Electronics Letters, 1997, 33, 1182.	0.5	13
119	The activation energy for GaAs/AlGaAs interdiffusion. Journal of Applied Physics, 1997, 82, 4842-4846.	1.1	27
120	The Fermi level effect in Ill–V intermixing: The final nail in the coffin?. Journal of Applied Physics, 1997, 81, 2179-2184.	1.1	12
121	Interdiffusion: A probe of vacancy diffusion in III-V materials. Physical Review B, 1997, 55, 15813-15818.	1.1	46
122	An optical study of interdiffusion in ZnSe/ZnCdSe. Applied Physics Letters, 1996, 69, 1579-1581.	1.5	15
123	The Effect of Co-Dopants on the Photoluminescence of Er3+ in Silicon. Materials Research Society Symposia Proceedings, 1995, 392, 217.	0.1	0
124	Control of defects in C+, Ge+, and Er+ implanted Si using post amorphization and solid phase regrowth. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 265-270.	0.6	14
125	Comparative study of silicon nitride encapsulated and phosphine overpressure annealing on the interdiffusion of InxGa1â^'xAsâ€InxGa1â^'xAsyP1â^'y heterostructures. Journal of Applied Physics, 1995, 77, 1463-1465.	1.1	7
126	Interdiffusion of the group-III sublattice in In-Ga-As-P/In-Ga-As-P and In-Ga-As/In-Ga-As heterostructures. Physical Review B, 1994, 50, 8071-8073.	1.1	39

#	Article	IF	CITATIONS
127	Strain and interdiffusion in semiconductor heterostructures. Physical Review B, 1994, 50, 7495-7498.	1.1	40
128	Diffusion of ion beam created vacancies and their effect on intermixing: A gambler's ruin approach. Journal of Applied Physics, 1994, 76, 3367-3371.	1.1	8
129	Thermally induced change in the profile of GaAs/AlGaAs quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 332-336.	1.7	4
130	Interdiffusion and thermally induced strain relaxation in GaAs/In0.2Ga0.8As/GaAs single quantum well structures. Nuclear Instruments & Methods in Physics Research B, 1994, 85, 192-196.	0.6	0
131	Characterization of thermally annealed In0.2Ga0.8As/GaAs single quantum wells by optical spectroscopy and ion beam techniques. Applied Physics Letters, 1994, 64, 40-42.	1.5	5
132	The effect of gallium implantation on the intermixing of InGaAs/GaAs strained quantum wells. Solid State Communications, 1993, 85, 197-198.	0.9	8
133	Vacancy controlled interdiffusion in Ill–V heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 21, 281-283.	1.7	2
134	Comparison of the effects of ion implantation induced interdiffusion in GaAs/AlGaAs and InGaAs/GaAs single quantum wells. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 747-750.	0.6	2
135	Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth. Journal of Applied Physics, 1993, 73, 3782-3786.	1.1	77
136	The effects of silicon and beryllium on the interdiffusion of GaAs/ AlxGa1â^'xAs and InxGa1â^'xAs/GaAs quantum well structures. Journal of Applied Physics, 1993, 73, 7715-7719.	1.1	12
137	The effects of ion implantation on the interdiffusion coefficients in InxGa1â^'xAs/GaAs quantum well structures. Journal of Applied Physics, 1993, 73, 1686-1692.	1.1	45
138	Vacancy controlled interdiffusion of the group V sublattice in strained InGaAs/InGaAsP quantum wells. Applied Physics Letters, 1993, 63, 797-799.	1.5	26
139	Effect of thermal diffusion on the excitonic reflectivity spectra of InGaAs/GaAs quantum wells. European Physical Journal Special Topics, 1993, 03, C5-291-C5-294.	0.2	1
140	Photoluminescence of acceptor states in mercury implanted gallium arsenide. Journal of Applied Physics, 1992, 71, 2021-2022.	1.1	3
141	<title>Effect of controlled vacancy injection by ion implantation on the intermixing of InGa/GaAs
quantum wells</title> . , 1992, , .		Ο
142	Reactive formation of cobalt silicide on single-crystal silicon under rapid electron beam heating. Applied Surface Science, 1992, 59, 55-62.	3.1	7
143	Rutherford backscattering and secondary ion mass spectrometry studies of erbium implanted silicon. Solid State Communications, 1991, 77, 907-910.	0.9	14
144	Thermal interdiffusion in InGaAs/GaAs strained quantum wells as a function of doping density. Superlattices and Microstructures, 1991, 9, 39-42.	1.4	14

#	Article	IF	CITATIONS
145	Lattice site location and outdiffusion of mercury implanted in GaAs. Nuclear Instruments & Methods in Physics Research B, 1991, 59-60, 1090-1093.	0.6	3
146	Thermal interdiffusion in InGaAs/GaAs and GaAsSb/GaAs strained quantum wells as a function of doping density. Optical and Quantum Electronics, 1991, 23, S975-S980.	1.5	7
147	Photoluminescence of deep levels in ionâ€implanted AlxGa1â^xAs. Applied Physics Letters, 1991, 58, 1404-1406.	1.5	3
148	Optical Waveguides In GaAlAs/GaAs And GalnAs/InP Multiquantum Well Structures. , 1990, , .		0
149	Thermal processing of GaAsSb/GaAs low-dimensional strained-layer structures. Superlattices and Microstructures, 1990, 7, 359-361.	1.4	6
150	Disorder-induced mixing of InGaAs/InP multiple quantum wells by phosphorus implantation for optical wave-guides. Semiconductor Science and Technology, 1990, 5, 1146-1146.	1.0	1
151	Disorder-induced mixing of InGaAs/InP multiple quantum wells by phosphorus implantation for optical waveguides. Semiconductor Science and Technology, 1990, 5, 1063-1066.	1.0	5
152	Thermal processing of strained GalnAs/GaAs high hole mobility transistor structures. Applied Physics Letters, 1990, 56, 1116-1118.	1.5	18
153	The effects of air-semiconductor depletion on hall effect profiling of ion-implanted semiconductors. Solid-State Electronics, 1989, 32, 1045-1047.	0.8	2
154	The use of Hall effect profiling to monitor the reactivation of silicon implants after oxygen implantation in gallium arsenide. Vacuum, 1989, 39, 1149-1151.	1.6	2
155	Characteristics of rareâ€earth element erbium implanted in silicon. Applied Physics Letters, 1989, 55, 432-433.	1.5	97