Yiwen Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5685491/yiwen-li-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

120	5,297	44	69
papers	citations	h-index	g-index
124	7,095	10.1	6.29
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
120	Fabrication of Functional Polycatechol Nanoparticles ACS Macro Letters, 2022, 11, 251-256	6.6	10
119	Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base <i>Macromolecular Rapid Communications</i> , 2022 , e2100916	4.8	9
118	Electrochemical Ring-Opening Dicarboxylation of Strained Carbon-Carbon Single Bonds with CO: Facile Synthesis of Diacids and Derivatization into Polyesters <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	6
117	Layer-by-layer assembled smart antibacterial coatings via mussel-inspired polymerization and dynamic covalent chemistry <i>Advanced Healthcare Materials</i> , 2022 , e2200112	10.1	4
116	Boosting the Optical Absorption of Melanin-like Polymers. <i>Macromolecules</i> , 2022 , 55, 3493-3501	5.5	4
115	Self-Assembly of Poly(Janus particle)s into Unimolecular and Oligomeric Spherical Micelles <i>ACS Macro Letters</i> , 2021 , 10, 1563-1569	6.6	1
114	Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress. <i>Small</i> , 2021 , 17, e210248	5 1 1	16
113	Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. <i>Polymer</i> , 2021 , 235, 124276	3.9	6
112	Dynamic Polymer Amphiphiles for Efficient Intracellular and In Vivo Protein Delivery. <i>Advanced Materials</i> , 2021 , 33, e2104355	24	9
111	Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. <i>Polymer</i> , 2021 , 217, 123464	3.9	46
110	Polycatechol Mediated Small Interfering RNA Delivery for the Treatment of Ulcerative Colitis. <i>Advanced Functional Materials</i> , 2021 , 31, 2101646	15.6	11
109	Emergence of melanin-inspired supercapacitors. <i>Nano Today</i> , 2021 , 37, 101075	17.9	41
108	Metal-phenolic network green flame retardants. <i>Polymer</i> , 2021 , 221, 123627	3.9	13
107	Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing. <i>Carbohydrate Polymers</i> , 2021 , 257, 117598	10.3	25
106	Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021 , 31, 2103391	15.6	29
105	Aminoglycoside-Based Biomaterials: From Material Design to Antibacterial and Gene Delivery Applications. <i>Advanced Functional Materials</i> , 2021 , 31, 2103718	15.6	10
104	Polyphenol scaffolds in tissue engineering. <i>Materials Horizons</i> , 2021 , 8, 145-167	14.4	75

(2020-2021)

Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. <i>Nano Research</i> , 2021 , 14, 969-975	10	22	
Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydrate Polymers, 2021 , 254, 117404	10.3	8	
Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. <i>Chemical Communications</i> , 2021 , 57, 2192-2195	5.8	2	
Morphological modulation of azobenzene-containing tubular polymersomes. <i>Polymer Chemistry</i> , 2021 , 12, 3052-3059	4.9	5	
A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Applied Materials & amp; Interfaces, 2021, 13, 7617-7624	9.5	60	
Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. <i>ACS Applied Materials & Distriction and ROS Nanoscavengers</i> 13, 9729-9738	9.5	9	
Green Nanoparticle Scavengers against Oxidative Stress. <i>ACS Applied Materials & District Stress</i> , 2021 , 13, 39126-39134	9.5	9	
Phase Behaviors of Multi-tailed B2AB2-Type Regio-isomeric Giant Surfactants at the Columnar-Spherical Boundary[]Chinese Journal of Chemistry, 2021 , 39, 3261	4.9	2	
l-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. <i>Chinese Chemical Letters</i> , 2021 , 32, 234-238	8.1	5	
Polydopamine antibacterial materials. <i>Materials Horizons</i> , 2021 , 8, 1618-1633	14.4	63	
Natural polyphenol fluorescent polymer dots. <i>Green Chemistry</i> , 2021 , 23, 1834-1839	10	18	
Stimuli-responsive polydopamine-based smart materials. <i>Chemical Society Reviews</i> , 2021 , 50, 8319-834.	3 58.5	77	
Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both and. <i>Nano Letters</i> , 2020 , 20, 8600-8607	11.5	26	
Polydopamine Nanomaterials: Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics (Small 18/2020). <i>Small</i> , 2020 , 16, 2070102	11	2	
Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. <i>Gene Therapy</i> , 2020 , 27, 383-391	4	12	
A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and N-microcystins as isotopically labelled internal standards. <i>Science of the Total Environment</i> , 2020 , 738, 139727	10.2	7	
Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. <i>Nanoscale</i> , 2020 , 12, 11395-11415	7.7	35	
ROS Scavenging Biopolymers for Anti-Inflammatory Diseases: Classification and Formulation. Advanced Materials Interfaces, 2020 , 7, 2000632	4.6	32	
	Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydrate Polymers, 2021, 254, 117404 Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chemical Communications, 2021, 57, 2192-2195 Morphological modulation of azobenzene-containing tubular polymersomes. Polymer Chemistry, 2021, 12, 3052-3059 A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Applied Materials & amp; Interfaces, 2021, 13, 7617-7624 Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. ACS Applied Materials & amp; Interfaces, 2021, 13, 9729-9738 Green Nanoparticle Scavengers against Oxidative Stress. ACS Applied Materials & amp; Interfaces, 2021, 13, 39126-39134 Phase Behaviors of Multi-tailed B2AB2-Type Regio-isomeric Giant Surfactants at the Columnar-Spherical Boundary/Lichinese Journal of Chemistry, 2021, 39, 3261 I-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. Chinese Chemical Letters, 2021, 32, 234-238 Polydopamine antibacterial materials. Materials Horizons, 2021, 8, 1618-1633 Natural polyphenol fluorescent polymer dots. Green Chemistry, 2021, 23, 1834-1839 Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-834 Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both and. Nano Letters, 2020, 20, 8600-8607 Polydopamine Nanomaterials: Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics (Small 18/2020). Small, 2020, 16, 2070102 Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Therapy, 2020, 27, 383-391 A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and N-microcystins as isotopically labelled internal standards. Science of the Total Environment, 2020, 738, 13972	Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydrate Polymers, 2021, 254, 117404 Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chemical Communications, 2021, 57, 2192-2195 Morphological modulation of azobenzene-containing tubular polymersomes. Polymer Chemistry, 2021, 12, 3052-3059 A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Applied Materials Ramp; Interfaces, 2021, 13, 7617-7624 Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. ACS Applied Materials Ramp; Interfaces, 2021, 13, 9729-9738 Green Nanoparticle Scavengers against Oxidative Stress. ACS Applied Materials Ramp; Interfaces, 2021, 13, 39126-39134 Phase Behaviors of Multi-tailed B2AB2-Type Regio-isomeric Clant Surfactants at the Columnar-Spherical Boundary/IChinese Journal of Chemistry, 2021, 39, 3261 L-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. Chinese Chemical Letters, 2021, 32, 234-238 Polydopamine antibacterial materials. Materials Harizons, 2021, 8, 1618-1633 144 Natural polyphenol fluorescent polymer dots. Green Chemistry, 2021, 23, 1834-1839 To Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-8343 58-5 Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both and. Nano Letters, 2020, 20, 8600-8607 Polydopamine Nanomaterials: Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics (Small 18/2020). Small, 2020, 16, 2070102 Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Therapy, 2020, 27, 383-391 A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPC-MS/MS and N-microcystins as isotopically labelled internal standards. Science of the Total Environnent, 2020,	Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydrate Polymers, 2021, 254, 117404 Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chemical Communications, 2021, 57, 2192-2195 Morphological modulation of azobenzene-containing tubular polymersomes. Polymer Chemistry, 2021, 12, 3052-3059 A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7617-7624 Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9729-9738 Creen Nanoparticle Scavengers against Oxidative Stress. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9729-9738 Creen Nanoparticle Scavengers against Oxidative Stress. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39126-39134 Phase Behaviors of Multi-tailed B2AB2-Type Regio-isomeric Giant Surfactants at the Columnar-Spherical Boundaryll Chinese Journal of Chemistry, 2021, 29, 3261 LArginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. Chinese Chemical Letters, 2021, 32, 234-238 Polydopamine antibacterial materials. Materials Horizons, 2021, 8, 1618-1633 Natural polyphenol fluorescent polymer dots. Green Chemistry, 2021, 23, 1834-1839 10 18 Stimuli-responsive polydopamine-based smart materials: Chemical Society Reviews, 2021, 50, 8319-8343 58-5 Polydopamine Nanomaterials: Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics (Small 18/2020). Small. 2020, 16, 2070102 Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Therapy, 2020, 27, 383-391 A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and Nemicrocystins as isotopically labelled Internal standards. Science of the Total Environment, 2020, 738, 139722 Integr

85	Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. <i>Small</i> , 2020 , 16, e1907042	11	114
84	Reductive dearomative arylcarboxylation of indoles with CO via visible-light photoredox catalysis. <i>Nature Communications</i> , 2020 , 11, 3263	17.4	58
83	Flexible and Robust Polyaniline Composites for Highly Efficient and Durable Solar Desalination. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2634-2642	6.1	37
82	Quantification of cylindrospermopsin, anatoxin-a and homoanatoxin-a in cyanobacterial bloom freshwater using direct injection/SPE coupled with UPLC-MS/MS. <i>Science of the Total Environment</i> , 2020 , 731, 139014	10.2	11
81	Smart azobenzene-containing tubular polymersomes: fabrication and multiple morphological tuning. <i>Chemical Communications</i> , 2020 , 56, 6237-6240	5.8	15
80	Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. <i>Current Medicinal Chemistry</i> , 2020 , 27, 3924-3943	4.3	5
79	Structural and Functional Tailoring of Melanin-Like Polydopamine Radical Scavengers. <i>CCS Chemistry</i> , 2020 , 2, 128-138	7.2	56
78	Natural Polyphenol Inspired Polycatechols for Efficient siRNA Delivery. <i>CCS Chemistry</i> , 2020 , 2, 146-157	7.2	42
77	S,S-Tetrazine-Based Hydrogels with Visible Light Cleavable Properties for On-Demand Anticancer Drug Delivery. <i>Research</i> , 2020 , 2020, 6563091	7.8	4
76	Recent developments in polydopamine fluorescent nanomaterials. <i>Materials Horizons</i> , 2020 , 7, 746-761	14.4	102
75	Photothermal-enhanced synthetic melanin inks for near-infrared imaging. <i>Polymer</i> , 2020 , 186, 122042	3.9	29
74	Antioxidant shape amphiphiles for accelerated wound healing. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 7018-7023	7.3	28
73	Natural polyphenols in drug delivery systems: Current status and future challenges. <i>Giant</i> , 2020 , 3, 1000	0326	50
72	Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. <i>Science China Chemistry</i> , 2020 , 63, 1295-1305	7.9	30
71	Polydopamine free radical scavengers. <i>Biomaterials Science</i> , 2020 , 8, 4940-4950	7.4	71
70	Regulating the absorption spectrum of polydopamine. Science Advances, 2020, 6,	14.3	107
69	Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2020 , 38, 1149-1156	3.5	37
68	Bioinspired fluorescent dihydroxyindoles oligomers. <i>Chinese Chemical Letters</i> , 2020 , 31, 783-786	8.1	20

(2018-2019)

67	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. <i>Chemical Communications</i> , 2019 , 55, 636-639	5.8	13
66	Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. <i>Polymer</i> , 2019 , 170, 65-75	3.9	36
65	Synthetic Melanin Hybrid Patchy Nanoparticle Photocatalysts. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5345-5352	3.8	28
64	Smart Hydrogels with Antibacterial Properties Built from All Natural Building Blocks. <i>Chemistry of Materials</i> , 2019 , 31, 7678-7685	9.6	55
63	Synthetic Biopigment Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 30360-30367	9.5	33
62	Transition Kinetics of Self-Assembled Supramolecular Dodecagonal Quasicrystal and Frank K asper [Phases in ABn Dendron-Like Giant Molecules. <i>ACS Macro Letters</i> , 2019 , 8, 875-881	6.6	24
61	Size control synthesis of melanin-like polydopamine nanoparticles by tuning radicals. <i>Polymer Chemistry</i> , 2019 , 10, 4194-4200	4.9	49
60	Tailoring Synthetic Melanin Nanoparticles for Enhanced Photothermal Therapy. <i>ACS Applied Materials & </i>	9.5	58
59	Recent Progress of Crosslinking Strategies for Polymeric Micelles with Enhanced Drug Delivery in Cancer Therapy. <i>Current Medicinal Chemistry</i> , 2019 , 26, 2356-2376	4.3	20
58	Froth flotation giant surfactants. <i>Polymer</i> , 2019 , 162, 58-62	3.9	14
57	"Click" chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. <i>Journal of Controlled Release</i> , 2018 , 273, 160-179	11.7	127
56	Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. <i>Biomaterials</i> , 2018 , 183, 10-19	15.6	77
55	Cooperation of Amphiphilicity and Smectic Order in Regulating the Self-Assembly of Cholesterol-Functionalized Brush-Like Block Copolymers. <i>Langmuir</i> , 2018 , 34, 11034-11041	4	8
54	Skin Pigmentation-Inspired Polydopamine Sunscreens. <i>Advanced Functional Materials</i> , 2018 , 28, 180212	7 15.6	84
53	Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy. <i>Accounts of Chemical Research</i> , 2018 , 51, 3-11	24.3	53
52	Solution Self-Assembly of Giant Surfactants: An Exploration on Molecular Architectures 2018 , 309-329		
51	Foe to Friend: Supramolecular Nanomedicines Consisting of Natural Polyphenols and Bortezomib. <i>Nano Letters</i> , 2018 , 18, 7045-7051	11.5	8o
50	Multilevel Manipulation of Supramolecular Structures of Giant Molecules via Macromolecular Composition and Sequence. <i>ACS Macro Letters</i> , 2018 , 7, 635-640	6.6	26

49	Synthetic Melanin E-Ink. ACS Applied Materials & Synthetic Melanin E-Ink.	9.5	33
48	Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols. <i>ACS Central Science</i> , 2017 , 3, 564-569	16.8	89
47	Tunable, Metal-Loaded Polydopamine Nanoparticles Analyzed by Magnetometry. <i>Chemistry of Materials</i> , 2017 , 29, 8195-8201	9.6	51
46	High Relaxivity Gadolinium-Polydopamine Nanoparticles. <i>Small</i> , 2017 , 13, 1701830	11	38
45	Sequence-Mandated, Distinct Assembly of Giant Molecules. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15014-15019	16.4	44
44	Sequence-Mandated, Distinct Assembly of Giant Molecules. <i>Angewandte Chemie</i> , 2017 , 129, 15210-152	1 <u>5</u> .6	8
43	Bioinspired bright noniridescent photonic melanin supraballs. <i>Science Advances</i> , 2017 , 3, e1701151	14.3	128
42	Green Tea Makes Polyphenol Nanoparticles with Radical-Scavenging Activities. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700446	4.8	54
41	Hierarchical Self-Organization of AB Dendron-like Molecules into a Supramolecular Lattice Sequence. <i>ACS Central Science</i> , 2017 , 3, 860-867	16.8	62
40	Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. <i>Biomaterials</i> , 2017 , 145, 138-153	15.6	44
39	Polyhedral oligomeric silsesquioxane meets ElickEhemistry: Rational design and facile preparation of functional hybrid materials. <i>Polymer</i> , 2017 , 125, 303-329	3.9	91
38	Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. <i>Biomaterials</i> , 2017 , 141, 116-124	15.6	104
37	Recent Advances in Synthesis and Identification of Cyclic Peptides for Bioapplications. <i>Current Topics in Medicinal Chemistry</i> , 2017 , 17, 2302-2318	3	19
36	Structure and Function of Iron-Loaded Synthetic Melanin. ACS Nano, 2016, 10, 10186-10194	16.7	89
35	Rational controlled morphological transitions in the self-assembled multi-headed giant surfactants in solution. <i>Chemical Communications</i> , 2016 , 52, 8687-90	5.8	32
34	Janus POSS Based on Mixed [2:6] Octakis-Adduct Regioisomers. <i>Chemistry - A European Journal</i> , 2016 , 22, 6397-403	4.8	31
33	Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks. <i>ACS Central Science</i> , 2016 , 2, 48-54	16.8	66
32	Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening. Materials Science and Engineering C, 2016, 61, 526-33	8.3	17

31	Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles. <i>Chemistry of Materials</i> , 2016 , 28, 5516-5521	9.6	83
30	Polycatechol Nanoparticle MRI Contrast Agents. <i>Small</i> , 2016 , 12, 668-77	11	59
29	Self-assembly of amphiphilic macrocycles containing polymeric liquid crystal grafts in solution. <i>Polymer Chemistry</i> , 2016 , 7, 2785-2789	4.9	11
28	Cyclic azobenzene-containing amphiphilic diblock copolymers: solution self-assembly and unusual photo-responsive behaviors. <i>Polymer Chemistry</i> , 2015 , 6, 3009-3013	4.9	13
27	Ion-modulated flow behavior of layer-by-layer fabricated polymer thin films. RSC Advances, 2015, 5, 64	19 ₂₇ 64	195
26	Self-assembly. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. <i>Science</i> , 2015 , 348, 424-8	33.3	266
25	Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles. <i>ACS Nano</i> , 2015 , 9, 5454-60	16.7	200
24	Biomacrocyclic side-chain liquid crystalline polymers bearing cholesterol mesogens: facile synthesis and topological effect study. <i>Polymer Chemistry</i> , 2015 , 6, 6885-6893	4.9	13
23	Stimuli-Responsive Materials: Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction (Adv. Mater. 37/2015). <i>Advanced Materials</i> , 2015 , 27, 5446-5446	24	3
22	Enzyme-regulated topology of a cyclic peptide brush polymer for tuning assembly. <i>Chemical Communications</i> , 2015 , 51, 17108-11	5.8	14
21	Precision synthesis of macrocyclic giant surfactants tethered with two different polyhedral oligomeric silsesquioxanes at distinct ring locations via four consecutive Elick[reactions. <i>Polymer Chemistry</i> , 2015 , 6, 827-837	4.9	19
20	Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. <i>Advanced Materials</i> , 2015 , 27, 5547-52	24	155
19	Photoresponsive Amphiphilic Macrocycles Containing Main-Chain Azobenzene Polymers. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1341-7	4.8	20
18	Modular construction of macrocycle-based topological polymers via high-efficient thiol chemistry. <i>Polymer Chemistry</i> , 2015 , 6, 2879-2891	4.9	12
17	Pathway toward large two-dimensional hexagonally patterned colloidal nanosheets in solution. Journal of the American Chemical Society, 2015 , 137, 1392-5	16.4	58
16	Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From NanoatomsIto Giant Molecules. <i>Macromolecules</i> , 2014 , 47, 1221-1239	5.5	258
15	IlickingIfluorinated polyhedral oligomeric silsesquioxane onto polymers: a modular approach toward shape amphiphiles with fluorous molecular clusters. <i>Polymer Chemistry</i> , 2014 , 5, 3588	4.9	32
14	Tuning Ehiol-eneFeactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes. <i>Chemical Science</i> . 2014 . 5. 1046-1053	9.4	54

13	Macromolecular structure evolution toward giant molecules of complex structure: tandem synthesis of asymmetric giant gemini surfactants. <i>Polymer Chemistry</i> , 2014 , 5, 3697	4.9	34
12	Thiol-Michael ElickEhemistry: another efficient tool for head functionalization of giant surfactants. <i>Polymer Chemistry</i> , 2014 , 5, 6151-6162	4.9	29
11	Giant surfactants based on molecular nanoparticles: Precise synthesis and solution self-assembly. Journal of Polymer Science, Part B: Polymer Physics, 2014 , 52, 1309-1325	2.6	58
10	Sequential Triple IlickIApproach toward Polyhedral Oligomeric Silsesquioxane-Based Multiheaded and Multitailed Giant Surfactants. <i>ACS Macro Letters</i> , 2013 , 2, 645-650	6.6	50
9	Cascading One-Pot Synthesis of Single-Tailed and Asymmetric Multitailed Giant Surfactants <i>ACS Macro Letters</i> , 2013 , 2, 1026-1032	6.6	39
8	Giant gemini surfactants based on polystyreneflydrophilic polyhedral oligomeric silsesquioxane shape amphiphiles: sequential flick[themistry and solution self-assembly. <i>Chemical Science</i> , 2013 , 4, 1345	9.4	103
7	Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10078-83	11.5	180
6	Synthesis of fullerene-containing poly(ethylene oxide)-block-polystyrene as model shape amphiphiles with variable composition, diverse architecture, and high fullerene functionality. <i>Polymer Chemistry</i> , 2012 , 3, 124-134	4.9	42
5	Improving the Biocompatibility of Dendrimers in Drug Delivery 2012 , 207-237		1
4	Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: molecular design, "click" synthesis, and hierarchical structure. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10712-5	16.4	140
3	Carrier-Free Deferoxamine Nanoparticles against Iron Overload in Brain. CCS Chemistry,1-30	7.2	3
2	Bioinspired Integration of Naturally Occurring Molecules towards Universal and Smart Antibacterial Coatings. <i>Advanced Functional Materials</i> ,2108749	15.6	16
1	Polyphenolic Sunscreens for Photoprotection. <i>Green Chemistry</i> ,	10	9