Kathlyn Laval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685179/publications.pdf

Version: 2024-02-01

687363 752698 25 448 13 20 citations h-index g-index papers 25 25 25 547 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Virulent Pseudorabies Virus Infection Induces a Specific and Lethal Systemic Inflammatory Response in Mice. Journal of Virology, $2018, 92, \ldots$	3.4	48
2	The Neuropathic Itch Caused by Pseudorabies Virus. Pathogens, 2020, 9, 254.	2.8	48
3	Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a ⁺ Monocytic Cells upon Adhesion to Endothelial Cells. Journal of Virology, 2015, 89, 10912-10923.	3.4	29
4	Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions. Journal of General Virology, 2012, 93, 1876-1886.	2.9	27
5	Equine herpesvirus type 1 replication is delayed in CD172a+ monocytic cells and controlled by histone deacetylases. Journal of General Virology, 2015, 96, 118-130.	2.9	26
6	Pseudorabies Virus US3 Protein Kinase Protects Infected Cells from NK Cell-Mediated Lysis via Increased Binding of the Inhibitory NK Cell Receptor CD300a. Journal of Virology, 2016, 90, 1522-1533.	3.4	26
7	Alphaherpesvirus infection of mice primes PNS neurons to an inflammatory state regulated by TLR2 and type I IFN signaling. PLoS Pathogens, 2019, 15, e1008087.	4.7	26
8	Access to a main alphaherpesvirus receptor, located basolaterally in the respiratory epithelium, is masked by intercellular junctions. Scientific Reports, 2017, 7, 16656.	3.3	25
9	Pollens destroy respiratory epithelial cell anchors and drive alphaherpesvirus infection. Scientific Reports, 2019, 9, 4787.	3.3	24
10	The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Frontiers in Neurology, 2021, 12, 658695.	2.4	22
11	Equine Herpesvirus 1 Bridles T Lymphocytes To Reach Its Target Organs. Journal of Virology, 2019, 93, .	3.4	20
12	The Pathogenesis and Immune Evasive Mechanisms of Equine Herpesvirus Type 1. Frontiers in Microbiology, 2021, 12, 662686.	3.5	17
13	CRISPR/Cas9-Constructed Pseudorabies Virus Mutants Reveal the Importance of UL13 in Alphaherpesvirus Escape from Genome Silencing. Journal of Virology, 2021, 95, .	3.4	14
14	Abortigenic but Not Neurotropic Equine Herpes Virus 1 Modulates the Interferon Antiviral Defense. Frontiers in Cellular and Infection Microbiology, 2018, 8, 312.	3.9	13
15	Beyond Gut Instinct: Metabolic Short-Chain Fatty Acids Moderate the Pathogenesis of Alphaherpesviruses. Frontiers in Microbiology, 2019, 10, 723.	3.5	13
16	Unravelling the first key steps in equine herpesvirus type 5 (EHV5) pathogenesis using ex vivo and in vitro equine models. Veterinary Research, 2019, 50, 13.	3.0	13
17	Isolation and characterization of equine nasal mucosal CD172a+ cells. Veterinary Immunology and Immunopathology, 2014, 157, 155-163.	1.2	11
18	An Alphaherpesvirus Exploits Antimicrobial \hat{I}^2 -Defensins To Initiate Respiratory Tract Infection. Journal of Virology, 2020, 94, .	3.4	11

KATHLYN LAVAL

#	Article	IF	CITATION
19	Replication of neurovirulent equine herpesvirus type 1 (EHV-1) in CD172a+ monocytic cells. Comparative Immunology, Microbiology and Infectious Diseases, 2017, 50, 58-62.	1.6	8
20	Deoxynivalenol, but not fumonisin B1, aflatoxin B1 or diesel exhaust particles disrupt integrity of the horse's respiratory epithelium and predispose it for equine herpesvirus type 1 infection. Veterinary Microbiology, 2019, 234, 17-24.	1.9	7
21	Equine herpesvirus 1 infection orchestrates the expression of chemokines in equine respiratory epithelial cells. Journal of General Virology, 2019, 100, 1567-1579.	2.9	7
22	Dual infections of equine herpesvirus 1 and equine arteritis virus in equine respiratory mucosa explants. Virus Research, 2016, 220, 104-111.	2.2	4
23	Mouse Footpad Inoculation Model to Study Viral-Induced Neuroinflammatory Responses. Journal of Visualized Experiments, 2020, , .	0.3	4
24	Entry of equid herpesvirus 1 into CD172a+ monocytic cells. Journal of General Virology, 2016, 97, 733-746.	2.9	4
25	Bacterial Toxins from Staphylococcus aureus and Bordetella bronchiseptica Predispose the Horse's Respiratory Tract to Equine Herpesvirus Type 1 Infection. Viruses, 2022, 14, 149.	3.3	1