
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing hydrogen production through anode fed-batch mode and controlled cell voltage in a microbial electrolysis cell fully catalysed by microorganisms. Chemosphere, 2022, 288, 132548.	4.2	6
2	Zero-Gap Bipolar Membrane Electrolyzer for Carbon Dioxide Reduction Using Acid-Tolerant Molecular Electrocatalysts. Journal of the American Chemical Society, 2022, 144, 7551-7556.	6.6	52
3	Polyaniline on Stainless Steel Fiber Felt as Anodes for Bioelectrodegradation of Acid Blue 29 in Microbial Fuel Cells. Frontiers in Chemical Engineering, 2022, 4, .	1.3	1
4	Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. Journal of Energy Storage, 2022, 52, 104764.	3.9	39
5	The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis. Applied Energy, 2021, 283, 116310.	5.1	31
6	Integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye Acid Blue 29. Science of the Total Environment, 2021, 756, 143752.	3.9	46
7	Biological and Microbial Fuel Cells. , 2021, , .		1
8	Enhanced bio-production from CO ₂ by microbial electrosynthesis (MES) with continuous operational mode. Faraday Discussions, 2021, 230, 344-359.	1.6	8
9	Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis. Electrochimica Acta, 2021, 372, 137853.	2.6	28
10	Porous Bilayer Electrodeâ€Guided Gas Diffusion for Enhanced CO ₂ Electrochemical Reduction. Advanced Energy and Sustainability Research, 2021, 2, 2100083.	2.8	10
11	Challenges in scaleâ€up of electrochemical <scp>CO₂</scp> reduction to formate integrated with product extraction using electrodialysis. Journal of Chemical Technology and Biotechnology, 2021, 96, 2461-2471.	1.6	3
12	Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of the Total Environment, 2021, 776, 145934.	3.9	36
13	No re-calibration required? Stability of a bioelectrochemical sensor for biodegradable organic matter over 800 days. Biosensors and Bioelectronics, 2021, 190, 113392.	5.3	8
14	Modeling and Upscaling Analysis of Gas Diffusion Electrode-Based Electrochemical Carbon Dioxide Reduction Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 351-361.	3.2	34
15	Redox mediator as cathode modifier for enhanced degradation of azo dye in a sequential dual chamber microbial fuel cell-aerobic treatment process. International Journal of Hydrogen Energy, 2021, 46, 39427-39437.	3.8	13
16	How to go beyond C ₁ products with electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2021, 5, 5893-5914.	2.5	19
17	Production of formate by CO ₂ electrochemical reduction and its application in energy storage. Sustainable Energy and Fuels, 2020, 4, 277-284.	2.5	69
18	Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. International Journal of Hydrogen Energy, 2020, 45, 2557-2568.	3.8	50

#	Article	IF	CITATIONS
19	A microbial fuel cell sensor for unambiguous measurement of organic loading and definitive identification of toxic influents. Environmental Science: Water Research and Technology, 2020, 6, 612-621.	1.2	13
20	Copper–Indium Binary Catalyst on a Gas Diffusion Electrode for High-Performance CO ₂ Electrochemical Reduction with Record CO Production Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 601-608.	4.0	57
21	Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. Npj Biofilms and Microbiomes, 2020, 6, 40.	2.9	45
22	Realizing Full Potential of Bioelectrochemical and Photoelectrochemical Systems. Joule, 2020, 4, 2085-2087.	11.7	11
23	Detection of 4-Nitrophenol, a Model Toxic Compound, Using Multi-Stage Microbial Fuel Cells. Frontiers in Environmental Science, 2020, 8, .	1.5	18
24	Editorial: International Society for Microbial Electrochemistry and Technology: Outputs From the 2018 Regional Meetings. Frontiers in Energy Research, 2020, 8, .	1.2	0
25	Influence of temperature and other system parameters on microbial fuel cell performance: Numerical and experimental investigation. Chemical Engineering Journal, 2020, 388, 124176.	6.6	78
26	High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria. Frontiers in Energy Research, 2019, 7, .	1.2	22
27	Bioelectrochemical treatment and recovery of copper from distillery waste effluents using power and voltage control strategies. Journal of Hazardous Materials, 2019, 371, 18-26.	6.5	14
28	Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. Journal of CO2 Utilization, 2019, 32, 1-10.	3.3	62
29	Enhanced selectivity of carbonaceous products from electrochemical reduction of CO2 in aqueous media. Journal of CO2 Utilization, 2019, 30, 214-221.	3.3	40
30	Tailoring properties of reduced graphene oxide by oxygen plasma treatment. Applied Surface Science, 2018, 440, 651-659.	3.1	55
31	The Effect of Oxygen Mass Transfer on Aerobic Biocathode Performance, Biofilm Growth and Distribution in Microbial Fuel Cells. Fuel Cells, 2018, 18, 4-12.	1.5	19
32	Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis. Bioresource Technology, 2018, 255, 39-49.	4.8	86
33	Enzymatic fuel cells with an oxygen resistant variant of pyranose-2-oxidase as anode biocatalyst. Biosensors and Bioelectronics, 2018, 107, 17-25.	5.3	20
34	Simultaneous Electrochemical Detection of Glucose and Non-Esterified Fatty Acids (NEFAs) for Diabetes Management. IEEE Sensors Journal, 2018, 18, 9075-9080.	2.4	12
35	Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environmental Science: Water Research and Technology, 2018, 4, 2029-2040.	1.2	31
36	Effects of Applied Potential and Reactants to Hydrogen-Producing Biocathode in a Microbial Electrolysis Cell. Frontiers in Chemistry, 2018, 6, 318.	1.8	21

#	Article	IF	CITATIONS
37	Stainless Steel-Based Materials for Energy Generation and Storage in Bioelectrochemical Systems Applications. ECS Transactions, 2018, 85, 1181-1192.	0.3	5
38	Electrochemical Reduction of CO ₂ at Multi-Metallic Interfaces. ECS Transactions, 2018, 85, 57-66.	0.3	10
39	Nutritional control of antibiotic production by Streptomyces platensis MA7327: importance of l-aspartic acid. Journal of Antibiotics, 2017, 70, 828-831.	1.0	6
40	Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide. Journal of Power Sources, 2017, 356, 459-466.	4.0	11
41	Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochemistry, 2017, 57, 141-158.	1.8	83
42	Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells. Bioresource Technology, 2017, 238, 313-324.	4.8	51
43	Recent Advances in Microbial Electrochemical Technologies (Topical Issue EU-ISMET 2016). Fuel Cells, 2017, 17, 582-583.	1.5	1
44	Electrochemical Detection of Plasma Immunoglobulin as a Biomarker for Alzheimer's Disease. Sensors, 2017, 17, 2464.	2.1	25
45	Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell. Frontiers in Energy Research, 2016, 4, .	1.2	26
46	Microbial fuel cells with highly active aerobic biocathodes. Journal of Power Sources, 2016, 324, 8-16.	4.0	77
47	Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells. Journal of Power Sources, 2016, 330, 211-218.	4.0	10
48	<i>Harvesting Energy using Biocatalysts</i> . Fuel Cells, 2016, 16, 517-521.	1.5	4
49	A multilevel sustainability analysis of zinc recovery from wastes. Resources, Conservation and Recycling, 2016, 113, 88-105.	5.3	47
50	A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2. Renewable and Sustainable Energy Reviews, 2016, 56, 116-132.	8.2	147
51	Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications. Applied Catalysis B: Environmental, 2016, 181, 279-288.	10.8	129
52	Preparation and evaluation of a highly stable palladium yttrium platinum core–shell–shell structure catalyst for oxygen reduction reactions. Applied Catalysis B: Environmental, 2015, 162, 593-601.	10.8	38
53	Electrochemical detection of non-esterified fatty acid by layer-by-layer assembled enzyme electrodes. Sensors and Actuators B: Chemical, 2014, 190, 535-541.	4.0	15
54	A direct glucose alkaline fuel cell using MnO2–carbon nanocomposite supported gold catalyst for anode glucose oxidation. Journal of Power Sources, 2013, 221, 1-5.	4.0	81

#	ARTICLE	IF	CITATIONS
55	Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells. Electrochemistry Communications, 2012, 21, 30-35.	2.3	22
56	Direct oxidation alkaline fuelcells: from materials to systems. Energy and Environmental Science, 2012, 5, 5668-5680.	15.6	228
57	A polytetrafluoroethylene-quaternary 1,4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10022-10026.	3.8	71
58	Evaluation of hydrolysis and fermentation rates in microbial fuel cells. Applied Microbiology and Biotechnology, 2011, 90, 789-798.	1.7	59
59	Electrochemical Oxidation of Clucose Using Mutant Glucose Oxidase from Directed Protein Evolution for Biosensor and Biofuel Cell Applications. Applied Biochemistry and Biotechnology, 2011, 165, 1448-1457.	1.4	23
60	Feasibility Study of Introducing Redox Property by Modification of PMBN Polymer for Biofuel Cell Applications. Applied Biochemistry and Biotechnology, 2010, 160, 1094-1101.	1.4	8
61	Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Energies, 2010, 3, 1499-1528.	1.6	309
62	Enzymatic Biofuel Cells—Fabrication of Enzyme Electrodes. Energies, 2010, 3, 23-42.	1.6	125
63	Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. Journal of Applied Electrochemistry, 2009, 39, 705-711.	1.5	82
64	Direct methanol alkaline fuel cells with catalysed anion exchange membrane electrodes. Journal of Applied Electrochemistry, 2005, 35, 91-96.	1.5	62
65	Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochemistry Communications, 2004, 6, 361-365.	2.3	110
66	Characterisation of platinised Ti mesh electrodes using electrochemical methods: methanol oxidation in sodium hydroxide solutions. Electrochimica Acta, 2004, 49, 2443-2452.	2.6	58
67	A study of the anodic oxidation of methanol on Pt in alkaline solutions. Journal of Electroanalytical Chemistry, 2003, 547, 17-24.	1.9	225