
S Emil Ruff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684795/publications.pdf Version: 2024-02-01

S FMIL RUFE

#	Article	IF	CITATIONS
1	Methyl/alkylâ€coenzyme M reductaseâ€based anaerobic alkane oxidation in archaea. Environmental Microbiology, 2021, 23, 530-541.	1.8	49
2	Influence of seasonality on the aerosol microbiome of the Amazon rainforest. Science of the Total Environment, 2021, 760, 144092.	3.9	13
3	Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin. Frontiers in Microbiology, 2021, 12, 633649.	1.5	28
4	Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME Journal, 2021, 15, 3480-3497.	4.4	22
5	Editorial: Microbial Communities and Metabolisms Involved in the Degradation of Cellular and Extracellular Organic Biopolymers. Frontiers in Microbiology, 2021, 12, 802619.	1.5	0
6	Common Environmental Pollutants Negatively Affect Development and Regeneration in the Sea Anemone Nematostella vectensis Holobiont. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
7	Methane oxidation and methylotroph population dynamics in groundwater mesocosms. Environmental Microbiology, 2020, 22, 1222-1237.	1.8	18
8	Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11029-11037.	3.3	33
9	Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiomes, 2020, 15, 3.	2.2	16
10	Microbial Communities and Metabolisms at Hydrocarbon Seeps. Springer Oceanography, 2020, , 1-19.	0.2	4
11	Freezing Tolerance of Thermophilic Bacterial Endospores in Marine Sediments. Frontiers in Microbiology, 2019, 10, 945.	1.5	18
12	In situ development of a methanotrophic microbiome in deep-sea sediments. ISME Journal, 2019, 13, 197-213.	4.4	61
13	Mobility and persistence of methane in groundwater in a controlled-release fieldÂexperiment. Nature Geoscience, 2017, 10, 289-294.	5.4	106
14	Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfateâ€reducing benthic microbial populations. Environmental Microbiology, 2017, 19, 4866-4881.	1.8	26
15	Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin. Frontiers in Microbiology, 2016, 7, 17.	1.5	72
16	Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane. Frontiers in Microbiology, 2016, 7, 46.	1.5	99
17	Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy. Frontiers in Microbiology, 2016, 7, 374.	1.5	38
18	Global dispersion and local diversification of the methane seep microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4015-4020.	3.3	248

S EMIL RUFF

#	Article	IF	CITATIONS
19	High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes. Frontiers in Microbiology, 2015, 6, 1511.	1.5	47
20	Anaerobic methanotrophic community of a 5346â€mâ€deep vesicomyid clam colony in the <scp>J</scp> apan <scp>T</scp> rench. Geobiology, 2014, 12, 183-199.	1.1	25
21	Indications for algae-degrading benthic microbial communities in deep-sea sediments along the Antarctic Polar Front. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 108, 6-16.	0.6	56
22	Microbial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand). PLoS ONE, 2013, 8, e72627.	1.1	78
23	Preparation and magnetoviscosity of nanotube ferrofluids by viral scaffolding and ALD on porous templates. Physica Status Solidi (B): Basic Research, 2010, 247, 2412-2423.	0.7	19
24	Enhancing the Magnetoviscosity of Ferrofluids by the Addition of Biological Nanotubes. ACS Nano, 2010, 4, 4531-4538.	7.3	65