Chong Cheng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5684606/chong-cheng-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

144 6,893 48 78 g-index

155 8,459 11.4 6.29 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
144	Recent Advances in ZIF-Derived Atomic Metal-N-C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities <i>Small</i> , 2022 , e2105409	11	8
143	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design <i>Small</i> , 2022 , e2105831	11	8
142	A Library of ROS-Catalytic Metalloenzyme-Mimics with Atomic Metal Centers <i>Advanced Materials</i> , 2022 , e2200255	24	6
141	Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation. <i>Chemical Engineering Journal</i> , 2022 , 427, 131685	14.7	6
140	Modulating Electron Transfer in Vanadium-Based Artificial Enzymes for Enhanced ROS-Catalysis and Disinfection <i>Advanced Materials</i> , 2022 , e2108646	24	5
139	A Library of ROS-Catalytic Metalloenzyme Mimics with Atomic Metal Centers (Adv. Mater. 16/2022). <i>Advanced Materials</i> , 2022 , 34, 2270120	24	2
138	Modulating Electron Transfer in Vanadium-Based Artificial Enzymes for Enhanced ROS-Catalysis and Disinfection (Adv. Mater. 17/2022). <i>Advanced Materials</i> , 2022 , 34, 2270128	24	O
137	Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	6
136	Ladder-type Etonjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries. <i>Chemical Engineering Journal</i> , 2021, 435, 133872	14.7	3
135	Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers. <i>Advanced Science</i> , 2021 , 9, e2102217	13.6	7
134	A Nanohook-Equipped Bionanocatalyst for Localized Near-Infrared-Enhanced Catalytic Bacterial Disinfection. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
133	Cobalt-Based Double Catalytic Sites on Mesoporous Carbon as Reversible Polysulfide Catalysts for Fast-Kinetic Li-S Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 51174-51185	9.5	6
132	Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria. <i>Nature Communications</i> , 2021 , 12, 6143	17.4	19
131	Designing MOF Nanoarchitectures for Electrochemical Water Splitting. <i>Advanced Materials</i> , 2021 , 33, e2006042	24	76
130	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. <i>MRS Bulletin</i> , 2021 , 46, 576-587	3.2	4
129	Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. <i>Advanced Functional Materials</i> , 2021 , 31, 2101804	15.6	16
128	Metal-Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , 33, e2008784	24	21

127	Oxygen-evolving catalytic atoms on metal carbides. <i>Nature Materials</i> , 2021 , 20, 1240-1247	27	58	
126	Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies. <i>Advanced Materials</i> , 2021 , 33, e2101095	24	25	
125	Homology and Immune Checkpoint Dual-Targeted Sonocatalytic Nanoagents for Enhancing Sonodynamic Tumor Therapy. <i>ACS Applied Materials & Enhancionary Interfaces</i> , 2021 , 13, 32810-32822	9.5	6	
124	Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection. <i>Advanced Materials</i> , 2021 , 33, e2100637	24	34	
123	Tumor Therapy: Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies (Adv. Mater. 29/2021). <i>Advanced Materials</i> , 2021 , 33, 2170227	24		
122	Engineering Biofunctional Enzyme-Mimics for Catalytic Therapeutics and Diagnostics. <i>Advanced Functional Materials</i> , 2021 , 31, 2007475	15.6	21	
121	Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. <i>Science Advances</i> , 2021 , 7,	14.3	13	
120	Multivalent Polyanionic 2D Nanosheets Functionalized Nanofibrous Stem Cell-based Neural Scaffolds. <i>Advanced Functional Materials</i> , 2021 , 31, 2010145	15.6	4	
119	Conjugated Coordination Porphyrin-based Nanozymes for Photo-/Sono-Augmented Biocatalytic and Homologous Tumor Treatments. <i>ACS Applied Materials & Discours (Materials & Discours)</i> , 13, 41485-41497	9.5	4	
118	A review of surface-enhanced Raman spectroscopy in pathological processes. <i>Analytica Chimica Acta</i> , 2021 , 1187, 338978	6.6	3	
117	Ros Scavenging: Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics (Adv. Funct. Mater. 31/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170226	15.6	О	
116	Anchoring Fe-N-C Sites on Hierarchically Porous Carbon Sphere and CNT Interpenetrated Nanostructures as Efficient Cathodes for Zinc-Air Batteries. <i>ACS Applied Materials & Discrete Section</i> , 13, 41609-41618	9.5	4	
115	Synthesis and Electronic Modulation of Nanostructured Layered Double Hydroxides for Efficient Electrochemical Oxygen Evolution. <i>ChemSusChem</i> , 2021 , 14, 5112-5134	8.3	4	
114	Activity Trends and Mechanisms in Peroxymonosulfate-Assisted Catalytic Production of Singlet Oxygen over Atomic Metal-N-C Catalysts. <i>Angewandte Chemie</i> , 2021 , 133, 22687-22695	3.6	3	
113	Activity Trends and Mechanisms in Peroxymonosulfate-Assisted Catalytic Production of Singlet Oxygen over Atomic Metal-N-C Catalysts. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22513-2	2524	32	
112	Bioinspired Spiky Peroxidase-Mimics for Localized Bacterial Capture and Synergistic Catalytic Sterilization. <i>Advanced Materials</i> , 2021 , 33, e2005477	24	33	
111	Assembling and Regulating of Transition Metal-Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. <i>Small</i> , 2021 , e2105763	11	5	
110	Topology-Matching Design of an Influenza-Neutralizing Spiky Nanoparticle-Based Inhibitor with a Dual Mode of Action. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15532-15536	16.4	16	

109	Ultrasound-targeted microbubble destruction augmented synergistic therapy of rheumatoid arthritis via targeted liposomes. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5245-5256	7.3	18
108	Ligand Diffusion Enables Force-Independent Cell Adhesion via Activating B1 Integrin and Initiating Rac and RhoA Signaling. <i>Advanced Materials</i> , 2020 , 32, e2002566	24	26
107	Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition. <i>Nano Letters</i> , 2020 , 20, 5367-5375	11.5	23
106	Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. <i>ACS Applied Materials & Eradication. ACS Applied Materials & Eradication. Materials & Eradication. ACS Applied Materials & Eradicati</i>	9.5	59
105	Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 1960-1970	7.3	11
104	Advanced nanomaterials for efficient oxygen electrodes in metallir batteries 2020 , 191-222		
103	CoreBhell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3168-3179	13	52
102	Spiky nanostructures for virus inhibition and infection prevention. <i>Smart Materials in Medicine</i> , 2020 , 1, 48-53	12.9	4
101	Transition Metal and Metal-N Codoped MOF-Derived Fenton-Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. <i>Small</i> , 2020 , 16, e2005060	11	28
100	Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. <i>Advanced Materials</i> , 2020 , 32, e2003	30 <u>6</u> 5	64
99	ZnO/Nanocarbons-Modified Fibrous Scaffolds for Stem Cell-Based Osteogenic Differentiation. <i>Small</i> , 2020 , 16, e2003010	11	28
98	New opportunities for emerging 2D materials in bioelectronics and biosensors. <i>Current Opinion in Biomedical Engineering</i> , 2020 , 13, 32-41	4.4	27
97	Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. <i>Nano-Micro Letters</i> , 2019 , 11, 87	19.5	37
96	Inorganic Nanozyme with Combined Self-Oxygenation/Degradable Capabilities for Sensitized Cancer Immunochemotherapy. <i>Nano-Micro Letters</i> , 2019 , 11, 74	19.5	40
95			
	A multivalent polyanion-dispersed carbon nanotube toward highly bioactive nanostructured fibrous stem cell scaffolds. <i>Applied Materials Today</i> , 2019 , 16, 518-528	6.6	18
94		6.6	18 70
	fibrous stem cell scaffolds. <i>Applied Materials Today</i> , 2019 , 16, 518-528 Size-Transformable Metal Drganic Framework Derived Nanocarbons for Localized Chemo-Photothermal Bacterial Ablation and Wound Disinfection. <i>Advanced Functional Materials</i> ,		

91	Metal-Organic-Framework-Derived 2D Carbon Nanosheets for Localized Multiple Bacterial Eradication and Augmented Anti-infective Therapy. <i>Nano Letters</i> , 2019 , 19, 5885-5896	11.5	90
90	Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. <i>Nano Today</i> , 2019 , 26, 57-97	17.9	43
89	Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. <i>Green Chemistry</i> , 2019 , 21, 4887-4918	10	27
88	Metal-Organic Precursor Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media. <i>Advanced Functional Materials</i> , 2019 , 29, 1807419	15.6	68
87	In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. <i>ACS Catalysis</i> , 2019 , 9, 1283-1288	13.1	128
86	Graphene Nanoinks: A Water-Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers (Adv. Mater. 5/2018). <i>Advanced Materials</i> , 2018 , 30, 1870030	o ²⁴	2
85	Active Salt/Silica-Templated 2D Mesoporous FeCo-N -Carbon as Bifunctional Oxygen Electrodes for Zinc-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1856-1862	16.4	267
84	Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx-Carbon as Bifunctional Oxygen Electrodes for ZincAir Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 1874-1880	3.6	36
83	Mussel-Inspired Polymer-Based Universal Spray Coating for Surface Modification: Fast Fabrication of Antibacterial and Superhydrophobic Surface Coatings. <i>Advanced Materials Interfaces</i> , 2018 , 5, 170125	5 4 .6	64
82	Atomic Fe-N Coupled Open-Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg-Air Batteries. <i>Advanced Materials</i> , 2018 , 30, e1802669	24	95
81	Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. <i>Advanced Functional Materials</i> , 2018 , 28, 170570	18 ^{5.6}	92
80	Functionalized 2D nanomaterials with switchable binding to investigate graphene-bacteria interactions. <i>Nanoscale</i> , 2018 , 10, 9525-9537	7.7	37
79	A Water-Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers. <i>Advanced Materials</i> , 2018 , 30, 1705452	24	43
78	Mussel-Inspired Synthesis of NIR-Responsive and Biocompatible Ag-Graphene 2D Nanoagents for Versatile Bacterial Disinfections. <i>ACS Applied Materials & Disinfections (Nature of Science)</i> 10, 296-307	9.5	70
77	MgAir Batteries: Atomic FeAx Coupled Open-Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in MgAir Batteries (Adv. Mater. 40/2018). <i>Advanced Materials</i> , 2018 , 30, 1870303	24	2
76	Thermally Responsive Microfibers Mediated Stem Cell Fate via Reversibly Dynamic Mechanical Stimulation. <i>Advanced Functional Materials</i> , 2018 , 28, 1804773	15.6	25
75	Antibacterial Nanoagents: Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection (Adv. Funct. Mater. 21/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870145	15.6	3
74	Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. <i>Acta Biomaterialia</i> , 2017 , 51, 479-494	10.8	71

73	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. <i>Chemical Reviews</i> , 2017 , 117, 1826-1914	68.1	333
72	Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. <i>Journal of Membrane Science</i> , 2017 , 528, 251-263	9.6	52
71	Bioinspired Universal Monolayer Coatings by Combining Concepts from Blood Protein Adsorption and Mussel Adhesion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 6624-6633	9.5	31
70	2D Porous Carbons prepared from Layered Organic-Inorganic Hybrids and their Use as Oxygen-Reduction Electrocatalysts. <i>Advanced Materials</i> , 2017 , 29, 1700707	24	95
69	Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. <i>Polymer Chemistry</i> , 2017 , 8, 2266-2275	4.9	31
68	Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. <i>Advanced Materials</i> , 2017 , 29, 1602547	24	182
67	High-Antifouling Polymer Brush Coatings on Nonpolar Surfaces via Adsorption-Cross-Linking Strategy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44281-44292	9.5	38
66	Functionalized graphene sheets for intracellular controlled release of therapeutic agents. Nanoscale, 2017, 9, 18931-18939	7.7	37
65	Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 6143-6153	7.3	24
64	Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes. <i>RSC Advances</i> , 2016 , 6, 88265-88276	3.7	30
63	Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. <i>Biomaterials Science</i> , 2016 , 4, 1431-40	7.4	37
62	Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. <i>RSC Advances</i> , 2016 , 6, 71893-71904	3.7	14
61	Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3203-3215	7.3	51
60	Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: bactericidal activity and mammal cell toxicity. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2749-2756	7.3	34
59	Switching biological functionalities of biointerfaces via dynamic covalent bonds. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 694-703	7.3	21
58	Construction of microgels embedded robust ultrafiltration membranes for highly effective bioadhesion resistance. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 139, 199-210	6	17
57	A porphyrin-PEG polymer with rapid renal clearance. <i>Biomaterials</i> , 2016 , 76, 25-32	15.6	53
56	Dynamic Covalent Bond-Assisted Anchor of PEG Brushes on Cationic Surfaces with Antibacterial and Antithrombotic Dual Capabilities. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500473	4.6	16

(2014-2016)

55	Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification. <i>Journal of Hazardous Materials</i> , 2016 , 318, 255-265	12.8	58
54	Mussel-Inspired Antibacterial and Biocompatible Silver-Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization. <i>Langmuir</i> , 2016 , 32, 5955-65	4	31
53	Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. <i>Biomaterials Science</i> , 2016 , 4, 1392-401	7.4	33
52	One-pot cross-linked copolymerization for the construction of robust antifouling and antibacterial composite membranes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4170-4180	7.3	46
51	Robust, highly elastic and bioactive heparin-mimetic hydrogels. <i>Polymer Chemistry</i> , 2015 , 6, 7893-7901	4.9	24
50	Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 1183-1193	5.5	28
49	Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. <i>Langmuir</i> , 2015 , 31, 9665-74	4	42
48	Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. <i>ACS Applied Materials & Discounty of the Post-Cross-linking and Discounty of the Post-Cross-li</i>	9.5	70
47	Layer by layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1391-1404	7.3	50
46	Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. <i>Journal of Membrane Science</i> , 2015 , 475, 455-468	9.6	114
45	A degradable brush polymer d rug conjugate for pH-responsive release of doxorubicin. <i>Polymer Chemistry</i> , 2015 , 6, 953-961	4.9	73
44	Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2015 , 103, 97-105	3.5	28
43	Ag-nanogel blended polymeric membranes with antifouling, hemocompatible and bactericidal capabilities. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 9295-9304	7.3	32
42	Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 592-602	7.3	67
41	Nanofibrous heparin and heparin-mimicking multilayers as highly effective endothelialization and antithrombogenic coatings. <i>Biomacromolecules</i> , 2015 , 16, 992-1001	6.9	64
40	From commodity polymers to functional polymers. <i>Scientific Reports</i> , 2014 , 4, 4604	4.9	29
39	Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 363-375	7.3	149
38	Light-Triggered Switching of Reversible and Alterable Biofunctionality via ECyclodextrin/Azobenzene-Based Host © uest Interaction. <i>ACS Macro Letters</i> , 2014 , 3, 1130-1133	6.6	56

37	Toward a highly hemocompatible membrane for blood purification via a physical blend of miscible comb-like amphiphilic copolymers. <i>Biomaterials Science</i> , 2014 , 2, 538-547	7.4	33
36	Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules. <i>ACS Applied Materials & Discrete Applied Mater</i>	9.5	68
35	Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. <i>Polymer Chemistry</i> , 2014 , 5, 59	0 6 -891	9 ⁶⁷
34	Self-assembled 3D biocompatible and bioactive layer at the macro-interface via graphene-based supermolecules. <i>Polymer Chemistry</i> , 2014 , 5, 3563	4.9	49
33	Graphene oxide interpenetrated polymeric composite hydrogels as highly effective adsorbents for water treatment. <i>RSC Advances</i> , 2014 , 4, 42346-42357	3.7	38
32	High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization. <i>Journal of Membrane Science</i> , 2014 , 468, 172-183	9.6	80
31	Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. <i>Journal of Membrane Science</i> , 2014 , 470, 90-101	9.6	71
30	Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization. <i>Desalination</i> , 2014 , 349, 80-93	10.3	36
29	Blood activation and compatibility on single-molecular-layer biointerfaces. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4911-4921	7.3	47
28	Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7649-7672	7.3	127
27	Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high-performance hemodialyzer. <i>Polymers for Advanced Technologies</i> , 2014 , 25, 851-860	3.2	18
26	Catechol chemistry inspired approach to construct self-cross-linked polymer nanolayers as versatile biointerfaces. <i>Langmuir</i> , 2014 , 30, 14905-15	4	47
25	Biologically inspired membrane design with a heparin-like interface: prolonged blood coagulation, inhibited complement activation, and bio-artificial liver related cell proliferation. <i>Biomaterials Science</i> , 2014 , 2, 98-109	7.4	72
24	Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. <i>Journal of Hazardous Materials</i> , 2013 , 263 Pt 2, 467-78	12.8	159
23	Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12105-9	16.4	105
22	Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 265-275	7.3	213
21	Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal. <i>Chemical Engineering Journal</i> , 2013 , 228, 468-481	14.7	127
20	Polyethersulfone enwrapped graphene oxide porous particles for water treatment. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 72-81	14.7	98

19	Polyaniline-Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. <i>Angewandte Chemie</i> , 2013 , 125, 12327-12331	3.6	44
18	Toward safe, efficient and multifunctional 3D blood-contact adsorbents engineered by biopolymers/graphene oxide gels. <i>RSC Advances</i> , 2013 , 3, 22120	3.7	36
17	Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. <i>Polymers for Advanced Technologies</i> , 2013 , 24, 1040-1050	3.2	26
16	Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. <i>Journal of Membrane Science</i> , 2012 , 405-406, 261-274	9.6	118
15	General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive dopamine. <i>Biomacromolecules</i> , 2012 , 13, 4236-46	6.9	127
14	Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. <i>ACS Nano</i> , 2012 , 6, 8349-56	16.7	378
13	The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. <i>Journal of Membrane Science</i> , 2012 , 417-418, 228-236	9.6	223
12	Comparison of surface segregation and anticoagulant property in block copolymer blended evaporation and phase inversion membranes. <i>Surface and Interface Analysis</i> , 2012 , 44, 819-824	1.5	17
11	Surface modification of polyethersulfone membranes by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol). <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 88, 315-24	6	48
10	Comparison of pH-sensitivity between two copolymer modified polyethersulfone hollow fiber membranes. <i>Desalination</i> , 2011 , 280, 152-159	10.3	19
9	Preparation of polyethersulfone-modified sepiolite hybrid particles for the removal of environmental toxins. <i>Chemical Engineering Journal</i> , 2011 , 171, 1132-1142	14.7	46
8	Synthesis, characterization, and application of polyethersulfone bound-iminodiacetic acid. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 345-350	2.9	6
7	Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes. <i>Journal of Membrane Science</i> , 2011 , 378, 369-381	9.6	60
6	Surface modification of polyethersulfone membrane by grafting bovine serum albumin. <i>Fibers and Polymers</i> , 2010 , 11, 960-966	2	18
5	A Nanohook-Equipped Bionanocatalyst for Localized Near-Infrared-Enhanced Catalytic Bacterial Disinfection. <i>Angewandte Chemie</i> ,e202113833	3.6	3
4	Micro/Nano-Scaled Covalent Organic Frameworks: Polymerization, Crystallization and Self-Assembly. <i>ChemNanoMat</i> ,	3.5	O
3	ROS-Catalytic Transition-Metal-Based Enzymatic Nanoagents for Tumor and Bacterial Eradication. <i>Advanced Functional Materials</i> ,2107530	15.6	16
2	Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. Information Materily,	23.1	2

High-Valence Transition Metal Modified FeNiV Oxides Anchored on Carbon Fiber Cloth for Efficient Oxygen Evolution Catalysis. *Advanced Fiber Materials*,1

10.9 2