
Thomas Pape

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684600/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clumped methane isotopologue-based temperature estimates for sources of methane in marine gas hydrates and associated vent gases. Geochimica Et Cosmochimica Acta, 2022, 327, 276-297.	3.9	14

Biomarker insights into a methane-enriched Holocene peat-setting from $\hat{a} \in \hat{c}$ Doggerland $\hat{a} \in (central North)$ Tj ETQq $\hat{0}_{1.7}$ 0 rgBT₂/Overlock

3	Electron Acceptor Availability Shapes Anaerobically Methane Oxidizing Archaea (ANME) Communities in South Georgia Sediments. Frontiers in Microbiology, 2021, 12, 617280.	3.5	11
4	Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin. Marine and Petroleum Geology, 2021, 127, 104957.	3.3	9
5	In-situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube deep sea fan, Black Sea. Earth and Planetary Science Letters, 2021, 563, 116869.	4.4	12
6	Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea. Geosciences (Switzerland), 2021, 11, 240.	2.2	9
7	Oil and gas seepage offshore Georgia (Black Sea) – Geochemical evidences for a paleogene-neogene hydrocarbon source rock. Marine and Petroleum Geology, 2021, 128, 104995.	3.3	8
8	Heterogeneous hydrocarbon seepage at Mictlan asphalt knoll of the southern Gulf of Mexico. Marine and Petroleum Geology, 2021, 132, 105185.	3.3	3
9	Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB016679.	3.4	20
10	New insights into geology and geochemistry of the Kerch seep area in the Black Sea. Marine and Petroleum Geology, 2020, 113, 104162.	3.3	13
11	Formation pathways of light hydrocarbons in deep sediments of the Danube deep-sea fan, Western Black Sea. Marine and Petroleum Geology, 2020, 122, 104627.	3.3	14
12	Shallow Gas Hydrate Accumulations at a Nigerian Deepwater Pockmark—Quantities and Dynamics. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018283.	3.4	10
13	Thermal Characterization of Pockmarks Across Vestnesa and Svyatogor Ridges, Offshore Svalbard. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019468.	3.4	1
14	Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin. Earth and Planetary Science Letters, 2020, 541, 116288.	4.4	15
15	Anaerobic Degradation of Non-Methane Alkanes by " <i>Candidatus</i> Methanoliparia―in Hydrocarbon Seeps of the Gulf of Mexico. MBio, 2019, 10, .	4.1	63
16	Deep-Sourced Fluids From a Convergent Margin Host Distinct Subseafloor Microbial Communities That Change Upon Mud Flow Expulsion. Frontiers in Microbiology, 2019, 10, 1436.	3.5	5
17	Characteristics and hydrocarbon seepage at the Challenger Knoll in the Sigsbee Basin, Gulf of Mexico. Geo-Marine Letters, 2019, 39, 391-399.	1.1	4
18	Amount and Fate of Gas and Oil Discharged at 3400 m Water Depth From a Natural Seep Site in the Southern Gulf of Mexico. Frontiers in Marine Science, 2019, 6, .	2.5	29

#	Article	IF	CITATIONS
19	Morphology and activity of the Helgoland Mud Volcano in the Sorokin Trough, northern Black Sea. Marine and Petroleum Geology, 2019, 99, 227-236.	3.3	8
20	In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics. Geochemistry, Geophysics, Geosystems, 2018, 19, 1165-1177.	2.5	18
21	Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nature Communications, 2018, 9, 83.	12.8	97
22	Seafloor sealing, doming, and collapse associated with gas seeps and authigenic carbonate structures at Venere mud volcano, Central Mediterranean. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 137, 76-96.	1.4	31
23	Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?. Geo-Marine Letters, 2018, 38, 121-129.	1.1	9
24	Mud extrusion and ring-fault gas seepage – upward branching fluid discharge at a deep-sea mud volcano. Scientific Reports, 2018, 8, 6275.	3.3	18
25	Focused hydrocarbonâ€migration in shallow sediments of a pockmark cluster in the Niger Delta (Off) Tj ETQq1 1	0.784314 2.5	4 rgBT /Over
26	Widespread methane seepage along the continental margin off Svalbard - from BjÃ,rnÃ,ya to Kongsfjorden. Scientific Reports, 2017, 7, 42997.	3.3	100
27	Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology, 2017, 2, 17093.	13.3	80
28	Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin. Marine and Petroleum Geology, 2017, 83, 140-157.	3.3	26
29	Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences, 2016, 13, 4491-4512.	3.3	40
30	Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage. Marine and Petroleum Geology, 2015, 67, 880-893.	3.3	12
31	Cold seeps at the salt front in the Lower Congo Basin I: Current methane accumulation and active seepage. Marine and Petroleum Geology, 2015, 67, 894-908.	3.3	15
32	Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chemical Geology, 2015, 415, 102-117.	3.3	84
33	Gas hydrate distributions in sediments of pockmarks from the Nigerian margin – Results and interpretation from shallow drilling. Marine and Petroleum Geology, 2015, 59, 359-370.	3.3	52
34	Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences, 2014, 11, 6029-6046.	3.3	73
35	Natural oil seepage at Kobuleti Ridge, eastern Black Sea. Marine and Petroleum Geology, 2014, 50, 68-82.	3.3	60
36	Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea. Marine Geology, 2014, 347, 27-42.	2.1	65

#	Article	IF	CITATIONS
37	Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin, Nankai Trough subduction zone. Geochemistry, Geophysics, Geosystems, 2014, 15, 2180-2194.	2.5	51
38	First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth and Planetary Science Letters, 2014, 403, 166-177.	4.4	40
39	Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution. Journal of Geophysical Research: Solid Earth, 2014, 119, 2679-2694.	3.4	91
40	Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 2013, 6, 647-651.	12.9	105
41	Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research, 2012, 117, .	3.3	108
42	Microstructure characteristics during hydrate formation and dissociation revealed by X-ray tomographic microscopy. Geo-Marine Letters, 2012, 32, 555-562.	1.1	29
43	Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Letters, 2012, 32, 501-513.	1.1	58
44	Diagenetic barium cycling in Black Sea sediments – A case study for anoxic marine environments. Geochimica Et Cosmochimica Acta, 2012, 88, 88-105.	3.9	67
45	Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea—the Kerch seep area. Marine Geology, 2012, 319-322, 57-74.	2.1	92
46	Distribution and abundance of gas hydrates in near-surface deposits of the HÃ¥kon Mosby Mud Volcano, SW Barents Sea. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	29
47	Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea. Geochimica Et Cosmochimica Acta, 2011, 75, 3250-3268.	3.9	52
48	High-intensity gas seepage causes rafting of shallow gas hydrates in the southeastern Black Sea. Earth and Planetary Science Letters, 2011, 307, 35-46.	4.4	50
49	Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 2011, 476, 176-180.	27.8	251
50	Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo-Marine Letters, 2010, 30, 187-206.	1.1	56
51	Geochemical and physical structure of the hydrothermal plume at the ultramafic-hosted Logatchev hydrothermal field at 14°45′N on the Mid-Atlantic Ridge. Marine Geology, 2010, 271, 187-197.	2.1	23
52	Microstructures of structure I and II gas hydrates from the Gulf of Mexico. Marine and Petroleum Geology, 2010, 27, 116-125.	3.3	56
53	Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics – Results from the combination of CT imaging with mineralogical and stable isotope analyses. Marine and Petroleum Geology, 2010, 27, 1819-1829.	3.3	27
54	Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico. Earth and Planetary Science Letters, 2010, 299, 207-217.	4.4	54

#	Article	IF	CITATIONS
55	Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site. Chemical Geology, 2010, 269, 350-363.	3.3	102
56	Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences, 2009, 6, 2383-2395.	3.3	58
57	Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study. International Journal of Earth Sciences, 2009, 98, 677-695.	1.8	42
58	Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams. Marine and Petroleum Geology, 2009, 26, 1799-1811.	3.3	93
59	The thermal structure of the Dvurechenskii mud volcano and its implications for gas hydrate stability and eruption dynamics. Marine and Petroleum Geology, 2009, 26, 1812-1823.	3.3	25
60	Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 1590-1599.	1.4	75
61	Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Geobiology, 2008, 6, 171-186.	2.4	45
62	Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 585-590.	1.7	32
63	Marine Methane Biogeochemistry of the Black Sea: A Review. Modern Approaches in Solid Earth Sciences, 2008, , 281-311.	0.3	6
64	Spongiispira norvegica gen. nov., sp. nov., a marine bacterium isolated from the boreal sponge Isops phlegraei. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1815-1820.	1.7	18
65	Bacillus plakortidis sp. nov. and Bacillus murimartini sp. nov., novel alkalitolerant members of rRNA group 6. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2888-2893.	1.7	43
66	The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15Ã,°N on the Mid-Atlantic Ridge. FEMS Microbiology Ecology, 2007, 61, 97-109.	2.7	81
67	Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environmental Microbiology, 2006, 8, 1220-1227.	3.8	158
68	Dense populations of Archaea associated with the demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters. Polar Biology, 2006, 29, 662-667.	1.2	43
69	In Vitro Study of Lipid Biosynthesis in an Anaerobically Methane-Oxidizing Microbial Mat. Applied and Environmental Microbiology, 2005, 71, 4345-4351.	3.1	66
70	Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 31-47.	2.3	51
71	An Anaerobic World in Sponges. Geomicrobiology Journal, 2005, 22, 1-10.	2.0	198
72	Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11111-11116.	7.1	331

#	Article	IF	CITATIONS
73	Sedimentary inclusions in the deepâ€water sponge Geodia barretti (Geodiidae, Demospongiae) from the Korsfjord, western Norway. Sarsia, 2004, 89, 245-252.	0.5	16
74	Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 2003, 34, 81-87.	1.8	114
75	Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 2002, 297, 1013-1015.	12.6	673
76	A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid sponges. Die Naturwissenschaften, 2002, 89, 60-66.	1.6	68
77	The steroids of hexactinellid sponges. Die Naturwissenschaften, 2002, 89, 415-419.	1.6	19
78	Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (<i>Meeresboden-BohrgerÃ t </i>). Scientific Drilling, 0, 23, 29-37.	0.6	15
79	Geochemistry of Hydrothermal Fluids From the E2-Segment of the East Scotia Ridge: Magmatic Input, Reaction Zone Processes, Fluid Mixing Regimes and Bioenergetic Landscapes. Frontiers in Marine Science, 0, 9, .	2.5	1