Sigurd Skogestad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568457/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 2003, 13, 291-309.	1.7	1,535
2	Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development, 1986, 25, 252-265.	0.6	1,247
3	Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000, 10, 487-507.	1.7	505
4	Control structure design for complete chemical plants. Computers and Chemical Engineering, 2004, 28, 219-234.	2.0	349
5	Operation of Integrated Three-Product (Petlyuk) Distillation Columns. Industrial & Engineering Chemistry Research, 1995, 34, 2094-2103.	1.8	238
6	Implications of large RGA-elements on control performance. Industrial & Engineering Chemistry Research, 1987, 26, 2323-2330.	1.8	223
7	Understanding the dynamic behavior of distillation columns. Industrial & Engineering Chemistry Research, 1988, 27, 1848-1862.	1.8	217
8	Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Industrial & Engineering Chemistry Research, 1991, 30, 2543-2555.	1.8	185
9	Simple frequency-dependent tools for control system analysis, structure selection and design. Automatica, 1992, 28, 989-996.	3.0	184
10	Optimal Selection of Controlled Variables. Industrial & Engineering Chemistry Research, 2003, 42, 3273-3284.	1.8	174
11	Robust performance of decentralized control systems by independent designs. Automatica, 1989, 25, 119-125.	3.0	172
12	Plantwide control - A review and a new design procedure. Modeling, Identification and Control, 2000, 21, 209-240.	0.6	171
13	Sequential design of decentralized controllers. Automatica, 1994, 30, 1601-1607.	3.0	151
14	Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables. Industrial & Engineering Chemistry Research, 2007, 46, 846-853.	1.8	140
15	Optimal measurement combinations as controlled variables. Journal of Process Control, 2009, 19, 138-148.	1.7	134
16	Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements. Industrial & Engineering Chemistry Research, 2003, 42, 605-615.	1.8	123
17	Self-Optimizing Control of a Large-Scale Plant: The Tennessee Eastman Process. Industrial & Engineering Chemistry Research, 2001, 40, 4889-4901.	1.8	120
18	The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning. Journal of Process Control, 2010, 20, 1220-1234.	1.7	119

#	Article	IF	CITATIONS
19	LV-Control of a high-purity distillation column. Chemical Engineering Science, 1988, 43, 33-48.	1.9	117
20	Effect of disturbance directions on closed-loop performance. Industrial & Engineering Chemistry Research, 1987, 26, 2029-2035.	1.8	112
21	Analysis of instability in an industrial ammonia reactor. AICHE Journal, 1998, 44, 888-895.	1.8	109
22	Selecting the best distillation control configuration. AICHE Journal, 1990, 36, 753-764.	1.8	107
23	Optimal operation of Petlyuk distillation: steady-state behavior. Journal of Process Control, 1999, 9, 407-424.	1.7	105
24	Multiple steady states in ideal two-product distillation. AICHE Journal, 1991, 37, 499-511.	1.8	102
25	Composition estimator in a pilot-plant distillation column using multiple temperatures. Industrial & Engineering Chemistry Research, 1991, 30, 2555-2564.	1.8	101
26	Control configuration selection for distillation columns. AICHE Journal, 1987, 33, 1620-1635.	1.8	99
27	Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements. Industrial & Engineering Chemistry Research, 2003, 42, 616-629.	1.8	98
28	Minimum Energy Consumption in Multicomponent Distillation. 1.VminDiagram for a Two-Product Column. Industrial & Engineering Chemistry Research, 2003, 42, 596-604.	1.8	93
29	Control structure design for the ammonia synthesis process. Computers and Chemical Engineering, 2008, 32, 2920-2932.	2.0	93
30	Complex distillation arrangements: Extending the petlyuk ideas. Computers and Chemical Engineering, 1997, 21, S237-S242.	2.0	91
31	Self-optimizing control: the missing link between steady-state optimization and control. Computers and Chemical Engineering, 2000, 24, 569-575.	2.0	91
32	Dynamics and Control of Distillation Columns - A Critical Survey. Modeling, Identification and Control, 1997, 18, 177-217.	0.6	90
33	Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules. Journal of Process Control, 2018, 70, 36-46.	1.7	89
34	Performance weight selection for H-infinity and μ-control methods. Transactions of the Institute of Measurement and Control, 1991, 13, 241-252.	1.1	84
35	Economically efficient operation of CO2 capturing process part I: Self-optimizing procedure for selecting the best controlled variables. Chemical Engineering and Processing: Process Intensification, 2011, 50, 247-253.	1.8	83
36	Active Vapor Split Control for Dividing-Wall Columns. Industrial & Engineering Chemistry Research, 2012, 51, 15176-15183.	1.8	81

#	Article	IF	CITATIONS
37	Tuning for Smooth PID Control with Acceptable Disturbance Rejection. Industrial & Engineering Chemistry Research, 2006, 45, 7817-7822.	1.8	80
38	Energy efficient distillation. Journal of Natural Gas Science and Engineering, 2011, 3, 571-580.	2.1	79
39	An industrial and academic perspective on plantwide control. Annual Reviews in Control, 2011, 35, 99-110.	4.4	75
40	Optimal operation of simple refrigeration cycles. Computers and Chemical Engineering, 2007, 31, 712-721.	2.0	73
41	Economically efficient operation of CO2 capturing process. Part II. Design of control layer. Chemical Engineering and Processing: Process Intensification, 2012, 52, 112-124.	1.8	72
42	Dividing wall columns for heterogeneous azeotropic distillation. Chemical Engineering Research and Design, 2015, 99, 111-119.	2.7	70
43	Pairing Criteria for Decentralized Control of Unstable Plants. Industrial & Engineering Chemistry Research, 1994, 33, 2134-2139.	1.8	66
44	Application of plantwide control to the HDA process. I—steady-state optimization and self-optimizing control. Control Engineering Practice, 2007, 15, 1222-1237.	3.2	65
45	NCO tracking and self-optimizing control in the context of real-time optimization. Journal of Process Control, 2011, 21, 1407-1416.	1.7	64
46	Design of resilient processing plants-IX. Effect of model uncertainty on dynamic resilience. Chemical Engineering Science, 1987, 42, 1765-1780.	1.9	62
47	SVD controllers for H2â^', Hâ^žâ^' and μ-optimal control. Automatica, 1997, 33, 433-439.	3.0	62
48	Coordinator MPC for maximizing plant throughput. Computers and Chemical Engineering, 2008, 32, 195-204.	2.0	62
49	Control of fuel cell power output. Journal of Process Control, 2007, 17, 333-347.	1.7	60
50	Multivessel batch distillation. AICHE Journal, 1997, 43, 971-978.	1.8	56
51	Controllability analysis of two-phase pipeline-riser systems at riser slugging conditions. Control Engineering Practice, 2007, 15, 567-581.	3.2	56
52	Steady-state real-time optimization using transient measurements. Computers and Chemical Engineering, 2018, 115, 34-45.	2.0	56
53	Dynamic behaviour of integrated plants. Journal of Process Control, 1996, 6, 145-156.	1.7	54
54	Output estimation using multiple secondary measurements: High-purity distillation. AICHE Journal, 1993, 39, 1641-1653.	1.8	52

#	Article	IF	CITATIONS
55	Shortcut Analysis of Optimal Operation of Petlyuk Distillation. Industrial & Engineering Chemistry Research, 2004, 43, 3994-3999.	1.8	52
56	Comparison of regular and inverted batch distillation. Chemical Engineering Science, 1996, 51, 4949-4962.	1.9	51
57	A Natural Gas to Liquids Process Model for Optimal Operation. Industrial & Engineering Chemistry Research, 2012, 51, 425-433.	1.8	50
58	Integrating operations and control: A perspective and roadmap for future research. Computers and Chemical Engineering, 2018, 115, 179-184.	2.0	50
59	Representation of uncertain time delays in the Hâ^žframework. International Journal of Control, 1994, 59, 627-638.	1.2	49
60	Improved independent design of robust decentralized controllers. Journal of Process Control, 1993, 3, 43-51.	1.7	48
61	Hydraulic design, technical challenges and comparison of alternative configurations of a four-product dividing wall column. Chemical Engineering and Processing: Process Intensification, 2014, 84, 71-81.	1.8	48
62	Effects of recycle on dynamics and control of chemical processing plants. Computers and Chemical Engineering, 1994, 18, S529-S534.	2.0	47
63	Optimal operation of Kaibel distillation columns. Chemical Engineering Research and Design, 2011, 89, 1382-1391.	2.7	46
64	Real-Time Optimization under Uncertainty Applied to a Gas Lifted Well Network. Processes, 2016, 4, 52.	1.3	46
65	Optimizing control of Petlyuk distillation: Understanding the steady-state behavior. Computers and Chemical Engineering, 1997, 21, S249-S254.	2.0	44
66	Multi-effect distillation applied to an industrial case study. Chemical Engineering and Processing: Process Intensification, 2005, 44, 819-826.	1.8	44
67	Total reflux operation of multivessel batch distillation. Computers and Chemical Engineering, 1996, 20, S1041-S1046.	2.0	43
68	Optimal operation of simple refrigeration cycles. Computers and Chemical Engineering, 2007, 31, 1590-1601.	2.0	43
69	Inadequacy of steady-state analysis for feedback control: distillate-bottom control of distillation columns. Industrial & Engineering Chemistry Research, 1990, 29, 2339-2346.	1.8	42
70	Inconsistencies in Dynamic Models for Ill-Conditioned Plants: Application to Low-Order Models of Distillation Columns. Industrial & Engineering Chemistry Research, 1994, 33, 631-640.	1.8	41
71	Near-optimal operation by self-optimizing control: from process control to marathon running and business systems. Computers and Chemical Engineering, 2004, 29, 127-137.	2.0	41
72	Control structure selection for three-product Petlyuk (dividing-wall) column. Chemical Engineering and Processing: Process Intensification, 2013, 64, 57-67.	1.8	41

#	Article	IF	CITATIONS
73	Comparison of Various Control Configurations for Continuous Bioreactors. Industrial & Engineering Chemistry Research, 1997, 36, 697-705.	1.8	39
74	Buffer Tank Design for Acceptable Control Performance. Industrial & Engineering Chemistry Research, 2003, 42, 2198-2208.	1.8	39
75	Control structure design for optimal operation of heat exchanger networks. AICHE Journal, 2008, 54, 150-162.	1.8	39
76	Selection of Controlled Variables and Robust Setpoints. Industrial & Engineering Chemistry Research, 2005, 44, 2207-2217.	1.8	38
77	Application of Plantwide Control to the HDA Process. IlRegulatory Control. Industrial & Engineering Chemistry Research, 2007, 46, 5159-5174.	1.8	38
78	Convex formulations for optimal selection of controlled variables and measurements using Mixed Integer Quadratic Programming. Journal of Process Control, 2012, 22, 995-1007.	1.7	38
79	Data reconciliation and optimal operation of a catalytic naphtha reformer. Journal of Process Control, 2008, 18, 320-331.	1.7	37
80	Model predictive control for the self-optimized operation in wastewater treatment plants: Analysis of dynamic issues. Computers and Chemical Engineering, 2015, 82, 259-272.	2.0	36
81	Consistent Inventory Control. Industrial & Engineering Chemistry Research, 2009, 48, 10892-10902.	1.8	35
82	Steady State and Dynamic Operation of Four-Product Dividing-Wall (Kaibel) Columns: Experimental Verification. Industrial & Engineering Chemistry Research, 2012, 51, 15696-15709.	1.8	35
83	Control structure selection for four-product Kaibel column. Computers and Chemical Engineering, 2016, 93, 372-381.	2.0	34
84	Dynamic models for heat exchangers and heat exchanger networks. Computers and Chemical Engineering, 1994, 18, S459-S463.	2.0	33
85	Control-oriented modelling and experimental study of the transient response of a high-temperature polymer fuel cell. Journal of Power Sources, 2006, 162, 215-227.	4.0	33
86	Control structure selection for four-product Petlyuk column. Chemical Engineering and Processing: Process Intensification, 2013, 67, 49-59.	1.8	33
87	Model Predictive Control of Reactive Dividing Wall Column for the Selective Hydrogenation and Separation of a C3 Stream in an Ethylene Plant. Industrial & Engineering Chemistry Research, 2016, 55, 9738-9748.	1.8	33
88	Single-cycle mixed-fluid LNG process Part I: Optimal design. , 2009, , 211-218.		31
89	Chemical and Energy Process Engineering. , 0, , .		30
90	Problems with Specifying Δ <i>T</i> _{min} in the Design of Processes with Heat Exchangers. Industrial & Engineering Chemistry Research, 2008, 47, 3071-3075.	1.8	28

#	Article	IF	CITATIONS
91	Self-optimizing control with active set changes. Journal of Process Control, 2012, 22, 873-883.	1.7	28
92	Control structure design and dynamic modeling for a solid oxide fuel cell with direct internal reforming of methane. Chemical Engineering Research and Design, 2015, 98, 202-211.	2.7	28
93	Bypass selection for control of heat exchanger networks. Computers and Chemical Engineering, 1992, 16, S263-S272.	2.0	27
94	Control strategies for reactive batch distillation. Journal of Process Control, 1994, 4, 205-217.	1.7	27
95	Temperature Cascade Control of Distillation Columns. Industrial & Engineering Chemistry Research, 1996, 35, 475-484.	1.8	27
96	Selection of Controlled Variables: Maximum Gain Rule and Combination of Measurements. Industrial & Engineering Chemistry Research, 2008, 47, 9465-9471.	1.8	27
97	Optimal operation of heat exchanger networks with stream split: Only temperature measurements are required. Computers and Chemical Engineering, 2014, 70, 35-49.	2.0	27
98	Relative Gain Array for Norm-Bounded Uncertain Systems. Industrial & Engineering Chemistry Research, 2006, 45, 1751-1757.	1.8	26
99	Dynamic considerations in the synthesis of selfâ€optimizing control structures. AICHE Journal, 2008, 54, 1830-1841.	1.8	26
100	Control of the mass and energy dynamics of polybenzimidazole-membrane fuel cells. Journal of Process Control, 2009, 19, 415-432.	1.7	26
101	Steady-State Operational Degrees of Freedom with Application to Refrigeration Cycles. Industrial & Engineering Chemistry Research, 2009, 48, 6652-6659.	1.8	26
102	Instability of distillation columns. AICHE Journal, 1994, 40, 1466-1478.	1.8	25
103	pH-neutralization: integrated process and control design. Computers and Chemical Engineering, 2004, 28, 1475-1487.	2.0	23
104	Minimum energy diagrams for multieffect distillation arrangements. AICHE Journal, 2005, 51, 1714-1725.	1.8	22
105	Plantwide Control for Economic Optimum Operation of a Recycle Process with Side Reaction. Industrial & Engineering Chemistry Research, 2011, 50, 8571-8584.	1.8	22
106	Real-Time optimization as a feedback control problem – A review. Computers and Chemical Engineering, 2022, 161, 107723.	2.0	22
107	Multiple Steady States and Instability in Distillation. Implications for Operation and Control. Industrial & Engineering Chemistry Research, 1995, 34, 4395-4405.	1.8	21
108	Perfect Steady-State Indirect Control. Industrial & Engineering Chemistry Research, 2005, 44, 863-867.	1.8	21

#	Article	IF	CITATIONS
109	Optimal controlled variables for polynomial systems. Journal of Process Control, 2012, 22, 167-179.	1.7	21
110	Economic Plantwide Control of the Cumene Process. Industrial & Engineering Chemistry Research, 2013, 52, 830-846.	1.8	21
111	Active constraint regions for a natural gas liquefaction process. Journal of Natural Gas Science and Engineering, 2013, 10, 8-13.	2.1	21
112	Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic Controlled Variable Selection. Industrial & Engineering Chemistry Research, 2013, 52, 9908-9921.	1.8	21
113	Optimal operation and stabilising control of the concentric heat-integrated distillation column (HIDiC). Computers and Chemical Engineering, 2017, 96, 196-211.	2.0	21
114	On combining self-optimizing control and extremum-seeking control – Applied to an ammonia reactor case study. Journal of Process Control, 2019, 78, 78-87.	1.7	21
115	Small-scale experiments on stabilizing riser slug flow. Chemical Engineering Research and Design, 2010, 88, 213-228.	2.7	20
116	Robust control of time-delay systems using the Smith predictor. International Journal of Control, 1993, 57, 1405-1420.	1.2	19
117	Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient Measurements. Industrial & Engineering Chemistry Research, 2019, 58, 207-216.	1.8	19
118	Robust control of homogeneous azeotropic distillation columns. AICHE Journal, 1991, 37, 1810-1824.	1.8	18
119	Effect of RHP zeros and poles on the sensitivity functions in multivariable systems. Journal of Process Control, 1998, 8, 155-164.	1.7	18
120	Offset-Free Tracking of Model Predictive Control with Model Mismatch:Â Experimental Results. Industrial & Engineering Chemistry Research, 2005, 44, 3966-3972.	1.8	18
121	A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark. PLoS Biology, 2015, 13, e1002046.	2.6	18
122	Opportunities and difficulties with 5 × 5 distillation control. Journal of Process Control, 1995, 5, 249-261.	1.7	17
123	Computational performance of aggregated distillation models. Computers and Chemical Engineering, 2009, 33, 296-308.	2.0	17
124	Active Constraint Regions for Optimal Operation of Chemical Processes. Industrial & Engineering Chemistry Research, 2011, 50, 11226-11236.	1.8	17
125	Economic Plantwide Control Over a Wide Throughput Range: A Systematic Design Procedure. AICHE Journal, 2013, 59, 2407-2426.	1.8	17
126	Simultaneous design of proportional–integral–derivative controller and measurement filter by optimisation. IET Control Theory and Applications, 2017, 11, 341-348.	1.2	17

#	Article	IF	CITATIONS
127	Consistency of steady-state models using insight about extensive variables. Industrial & Engineering Chemistry Research, 1991, 30, 654-661.	1.8	16
128	Feedforward Control under the Presence of Uncertainty*. European Journal of Control, 2004, 10, 30-46.	1.6	16
129	Simple Rules for Economic Plantwide Control. Computer Aided Chemical Engineering, 2015, 37, 101-108.	0.3	16
130	Systematic Design of Active Constraint Switching Using Classical Advanced Control Structures. Industrial & Engineering Chemistry Research, 2020, 59, 2229-2241.	1.8	16
131	Multi-input single-output control for extending the operating range: Generalized split range control using the baton strategy. Journal of Process Control, 2020, 91, 1-11.	1.7	16
132	Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response. Modeling, Identification and Control, 2000, 21, 83-103.	0.6	16
133	Reactor/separator processes with recycles-2. Design for composition control. Computers and Chemical Engineering, 2003, 27, 401-421.	2.0	15
134	Control structure comparison for three-product Petlyuk column. Chinese Journal of Chemical Engineering, 2018, 26, 1621-1630.	1.7	15
135	Optimal operation of oil and gas production using simple feedback control structures. Control Engineering Practice, 2019, 91, 104107.	3.2	15
136	Comparison of stabilizing control structures for dividing wall columns. IFAC-PapersOnLine, 2016, 49, 729-734.	0.5	14
137	A simple dynamic gravity separator model for separation efficiency evaluation incorporating level and pressure control. , 2017, , .		14
138	Improving Scenario Decomposition for Multistage MPC Using a Sensitivity-Based Path-Following Algorithm. , 2018, 2, 581-586.		14
139	Online Process Optimization with Active Constraint Set Changes using Simple Control Structures. Industrial & Engineering Chemistry Research, 2019, 58, 13555-13567.	1.8	14
140	Control of Unstable Distillation Columns. , 1991, , .		13
141	Closed operation of multivessel batch distillation: Experimental verification. AICHE Journal, 2000, 46, 1209-1217.	1.8	13
142	Plantwide control: Towards a systematic procedure. Computer Aided Chemical Engineering, 2002, 10, 57-69.	0.3	13
143	Identification and analysis of possible splits for azeotropic mixtures—1. Method for column sections. Chemical Engineering Science, 2011, 66, 2512-2522.	1.9	13
144	Anti-slug control solutions based on identified model. Journal of Process Control, 2015, 30, 58-68.	1.7	13

#	Article	IF	CITATIONS
145	Dividingâ€Wall Column for Fractionation of Natural Gas Liquids in Floating Liquefied Natural Gas Plants. Chemical Engineering and Technology, 2016, 39, 2348-2354.	0.9	13
146	Anti-slug control based on a virtual flow measurement. Flow Measurement and Instrumentation, 2017, 53, 299-307.	1.0	13
147	A Distributed Algorithm for Scenario-based Model Predictive Control using Primal Decomposition. IFAC-PapersOnLine, 2018, 51, 351-356.	0.5	13
148	Optimal Operation with Changing Active Constraint Regions using Classical Advanced Control. IFAC-PapersOnLine, 2018, 51, 440-445.	0.5	13
149	Scaled steady state models for effective on-line applications. Computers and Chemical Engineering, 2008, 32, 990-999.	2.0	12
150	Medium-Scale Experiments on Stabilizing Riser-Slug Flow. SPE Projects, Facilities and Construction, 2009, 4, 156-170.	0.2	12
151	Controllability analysis of severe slugging in well-pipeline-riser systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 101-108.	0.4	12
152	A First-Principles Approach for Control-Oriented Modeling of De-oiling Hydrocyclones. Industrial & Engineering Chemistry Research, 2020, 59, 18937-18950.	1.8	12
153	Experience in Norsk Hydro with cubic equations of state. Fluid Phase Equilibria, 1983, 13, 179-188.	1.4	11
154	Selection of Controlled Variables for a Natural Gas to Liquids Process. Industrial & Engineering Chemistry Research, 2012, 51, 10179-10190.	1.8	11
155	Gas Lift Optimization under Uncertainty. Computer Aided Chemical Engineering, 2017, 40, 1753-1758.	0.3	11
156	Dynamic self-optimizing control for unconstrained batch processes. Computers and Chemical Engineering, 2018, 117, 451-468.	2.0	11
157	A Primal decomposition algorithm for distributed multistage scenario model predictive control. Journal of Process Control, 2019, 81, 162-171.	1.7	11
158	Systematic design of active constraint switching using selectors. Computers and Chemical Engineering, 2020, 143, 107106.	2.0	11
159	Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization. IFAC-PapersOnLine, 2021, 54, 706-711.	0.5	11
160	Controller design for serial processes. Journal of Process Control, 2005, 15, 259-271.	1.7	10
161	Reduced distillation models via stage aggregation. Chemical Engineering Science, 2010, 65, 3439-3456.	1.9	10
162	Manipulation of vapour split in Kaibel distillation arrangements. Chemical Engineering and Processing: Process Intensification, 2013, 72, 10-23.	1.8	10

#	Article	IF	CITATIONS
163	Improved PI control for a surge tank satisfying level constraints ⎠âŽThis work was supported in part by the Norwegian Research Council under the project SUBPRO (Subsea production and processing) IFAC-PapersOnLine, 2018, 51, 835-840.	0.5	10
164	Optimization of fixed-order controllers using exact gradients. Journal of Process Control, 2018, 71, 130-138.	1.7	10
165	Multiple-Input Single-Output Control for Extending the Steady-State Operating Range—Use of Controllers with Different Setpoints. Processes, 2019, 7, 941.	1.3	10
166	Optimal operation and control of heat to power cycles: A new perspective from a systematic plantwide control approach. Computers and Chemical Engineering, 2020, 141, 106995.	2.0	10
167	Linear parameter-varying model for a refuellable zinc–air battery. Royal Society Open Science, 2020, 7, 201107.	1.1	10
168	A systematic approach to the design of buffer tanks. Computers and Chemical Engineering, 2000, 24, 1395-1401.	2.0	9
169	Approach for efficient computation of disturbance rejection measures for feedback control. Journal of Process Control, 2007, 17, 501-508.	1.7	9
170	Global Self-Optimizing Control for Uncertain Constrained Process Systems * *The author L. Ye gratefully acknowledge the National Natural Science Foundation of China (NSFC) (61673349, 61304081), Ningbo Natural Science Foundation (2015A610151) and China Scholarship Council (No. 201508330751). IFAC-PapersOnLine, 2017, 50, 4672-4677.	0.5	9
171	Systematic Design of Split Range Controllers. IFAC-PapersOnLine, 2019, 52, 898-903.	0.5	9
172	Branch and bound methods for control structure design. Computer Aided Chemical Engineering, 2006, 21, 1371-1376.	0.3	8
173	Identification and analysis of possible splits for azeotropic mixtures. 2. Method for simple columns. Chemical Engineering Science, 2012, 69, 159-169.	1.9	8
174	Profitable and dynamically feasible operating point selection for constrained processes. Journal of Process Control, 2014, 24, 531-541.	1.7	8
175	Optimal operation of energy storage in buildings: Use of the hot water system. Journal of Energy Storage, 2016, 5, 102-112.	3.9	8
176	Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: Top-down analysis. Energy Conversion and Management, 2017, 152, 88-98.	4.4	8
177	Control-oriented modelling of gas-liquid cylindrical cyclones. , 2017, , .		8
178	A Control- and Estimation-Oriented Gravity Separator Model for Oil and Gas Applications Based upon First-Principles. Industrial & Engineering Chemistry Research, 2018, 57, 7201-7217.	1.8	8
179	Self-Optimizing Control in Chemical Recycle Processes. IFAC-PapersOnLine, 2018, 51, 536-541.	0.5	8
180	Surrogate model generation using self-optimizing variables. Computers and Chemical Engineering, 2018, 119, 143-151.	2.0	8

#	Article	IF	CITATIONS
181	The use of first principles model for evaluation of adaptive soft sensor for multicomponent distillation unit. Chemical Engineering Research and Design, 2019, 151, 70-78.	2.7	8
182	A new termination criterion for sampling for surrogate model generation using partial least squares regression. Computers and Chemical Engineering, 2019, 121, 75-85.	2.0	8
183	Modelling and Identification for Robust Control of Ill-Conditioned Plants - a Distillation Case Study. , 1991, , .		8
184	Loopshaping for robust performance. International Journal of Robust and Nonlinear Control, 1996, 6, 805-823.	2.1	7
185	A new approach to explicit MPC using self-optimizing control. , 2008, , .		7
186	Optimal output selection for control of batch processes. , 2008, , .		7
187	Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch Distillation Column. Industrial & Engineering Chemistry Research, 2009, 48, 5336-5343.	1.8	7
188	Application of Balanced Truncation to Nonlinear Systems. Industrial & Engineering Chemistry Research, 2011, 50, 10093-10101.	1.8	7
189	A New Class of Model-Based Static Estimators. Industrial & Engineering Chemistry Research, 2013, 52, 12451-12462.	1.8	7
190	Virtual inflow monitoring for a three phase gravity separator. , 2017, , .		7
191	Control structure selection for an evaporation process. Computer Aided Chemical Engineering, 2001, 9, 657-662.	0.3	6
192	Control of Bulk Propylene Polymerizations Operated with Multiple Catalysts through Controller Reconfiguration. Macromolecular Reaction Engineering, 2014, 8, 201-216.	0.9	6
193	Design and control of azeotropic dividing wall column for separating furfural-water mixture. Computer Aided Chemical Engineering, 2016, 38, 409-414.	0.3	6
194	Robust control of a two-state Greitzer compressor model by state-feedback linearization. , 2016, , .		6
195	Nonlinear control solutions to prevent slugging flow in offshore oil production. Journal of Process Control, 2017, 54, 138-151.	1.7	6
196	A systematic approach for airflow velocity control design in road tunnels. Control Engineering Practice, 2017, 69, 61-72.	3.2	6
197	Comparison of Model-Based Control Solutions for Severe Riser-Induced Slugs. Energies, 2017, 10, 2014.	1.6	6
198	Data-driven Scenario Selection for Multistage Robust Model Predictive Control. IFAC-PapersOnLine, 2018, 51, 462-468.	0.5	6

4

#	Article	IF	CITATIONS
199	Changing between Active Constraint Regions for Optimal Operation: Classical Advanced Control versus Model Predictive Control. Computer Aided Chemical Engineering, 2018, , 1015-1020.	0.3	6
200	Plantwide control of an oil production network. Computers and Chemical Engineering, 2020, 136, 106765.	2.0	6
201	Simple frequency-dependent tools for analysis of inherent control limitations. Modeling, Identification and Control, 1991, 12, 159-177.	0.6	6
202	Plantwide Control of a Cumene Manufacture Process. Computer Aided Chemical Engineering, 2011, 29, 522-526.	0.3	5
203	Active Constraint Regions for Optimal Operation of Distillation Columns. Industrial & Engineering Chemistry Research, 2012, 51, 2963-2973.	1.8	5
204	Quantitative methods for regulatory control layer selection. Journal of Process Control, 2013, 23, 58-69.	1.7	5
205	Modeling and Hydraulic Characterization of a Filter-Press-Type Electrochemical Reactor by Using Residence Time Distribution Analysis and Hydraulic Indices. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	5
206	Gas-lift Optimization by Controlling Marginal Gas-Oil Ratio using Transient Measurements ⎠âŽThe authors gratefully acknowledge the financial support from SFI SUBPRO, which is financed by the Research Council of Norway major industry partners and NTNU IFAC-PapersOnLine, 2018, 51, 19-24.	0.5	5
207	Control structure design of a solid oxide fuel cell and molten carbonate fuel cell integrated system: Bottom-up analysis. Energy Conversion and Management, 2020, 220, 113021.	4.4	5
208	State Space Realization of Model Predictive Controllers Without Active Constraints. Modeling, Identification and Control, 2003, 24, 231-244.	0.6	5
209	Transformed Manipulated Variables for Linearization, Decoupling and Perfect Disturbance Rejection. IFAC-PapersOnLine, 2020, 53, 4052-4057.	0.5	5
210	THROUGHPUT MAXIMIZATION BY IMPROVED BOTTLENECK CONTROL. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 63-68.	0.4	4
211	Self-optimizing invariants in dynamic optimization. , 2011, , .		4
212	A Self-Optimizing Strategy for Optimal Operation of a Preheating Train for a Crude Oil Unit. Computer Aided Chemical Engineering, 2014, 33, 607-612.	0.3	4
213	Dual SIMC-PI Controller Design for Cascade Implement of Input Resetting Control with Application. Industrial & Engineering Chemistry Research, 2018, 57, 6947-6955.	1.8	4
214	Slug handling with a virtual harp based on nonlinear predictive control for a gravity separator ⎠âŽThis work was supported by the Norwegian Research Council under the project SUBPRO (Subsea) Tj ETQq0 0 0 rgBT	/Overslock	104Tf 50 137
215	Application of Surrogate Models as an Alternative to Process Simulation for Implementation of the Self-Optimizing Control Procedure on Large-Scale Process Plants—A Natural Gas-to-Liquids (GTL) Case Study. Industrial & Engineering Chemistry Research, 2021, 60, 4919-4929.	1.8	4

216Supervisory control design for balancing supply and demand in a district heating system with thermal
energy storage. Computers and Chemical Engineering, 2021, 149, 107306.2.0

#	Article	IF	CITATIONS
217	Dynamics and control of unstable distillation columns. Modeling, Identification and Control, 1993, 14, 59-72.	0.6	4
218	Controlled Variables from Optimal Operation Data. Computer Aided Chemical Engineering, 2011, 29, 753-757.	0.3	4
219	μ-Interaction Measure for Unstable Systems. , 2006, , .		3
220	Estimation of Primary Variables from Combination of Secondary Measurements. Computer Aided Chemical Engineering, 2012, 31, 925-929.	0.3	3
221	An aggregation model reduction method for oneâ€dimensional distributed systems. AICHE Journal, 2012, 58, 1524-1537.	1.8	3
222	Optimal Operation and Control of Divided Wall Column. Computer Aided Chemical Engineering, 2014, 33, 673-678.	0.3	3
223	Necessary and sufficient conditions for robust reliable control in the presence of model uncertainties and system component failures. Computers and Chemical Engineering, 2014, 70, 67-77.	2.0	3
224	Comparative Study of Multicomponent Distillation Static Estimators Based on Industrial and Rigorous Model Datasets. IFAC-PapersOnLine, 2016, 49, 1187-1192.	0.5	3
225	Simple method for parameter identification of a nonlinear Greitzer compressor model. IFAC-PapersOnLine, 2018, 51, 198-203.	0.5	3
226	A Dynamic Extremum Seeking Scheme Applied to Gas Lift Optimization. IFAC-PapersOnLine, 2019, 52, 802-807.	0.5	3
227	Compositional Simulation of a Refinery Coker Furnace - An Industrial Example of Two-Phase Flow with Chemical Reaction. Modeling, Identification and Control, 1986, 7, 25-44.	0.6	3
228	Bidirectional inventory control with optimal use of intermediate storage. Computers and Chemical Engineering, 2022, 159, 107677.	2.0	3
229	Control and optimal operation of simple heat pump cycles. Computer Aided Chemical Engineering, 2005, 20, 1429-1434.	0.3	2
230	Dynamic Degrees of Freedom for Tighter Bottleneck Control. Computer Aided Chemical Engineering, 2009, 27, 1275-1280.	0.3	2
231	A simple approach for on-line PI controller tuning using closed-loop setpoint responses. Computer Aided Chemical Engineering, 2010, 28, 619-624.	0.3	2
232	Economic NMPC for heat-integrated chemical reactors. , 2017, , .		2
233	Control of the Steady-State Gradient of an Ammonia Reactor using Transient Measurements. Computer Aided Chemical Engineering, 2018, , 1111-1116.	0.3	2
234	Optimal Operation and Control of Heat-to-Power Cycles: a New Perspective using a Systematic Plantwide Control Approach. Computer Aided Chemical Engineering, 2019, , 1429-1434.	0.3	2

#	Article	IF	CITATIONS
235	Linear Combination of Gradients as Optimal Controlled Variables. Computer Aided Chemical Engineering, 2020, 48, 1237-1242.	0.3	2
236	Experimental validation of distributed feedback-based real-time optimization in a gas-lifted oil well rig. Control Engineering Practice, 2022, 126, 105253.	3.2	2
237	Optimal Number of Stages in Distillation with respect to Controllability. Computer Aided Chemical Engineering, 2002, 10, 499-504.	0.3	1
238	Selecting appropriate control variables for a heat integrated distillation system with prefractionator. Computer Aided Chemical Engineering, 2003, 14, 407-412.	0.3	1
239	Self-optimizing control: From key performance indicators to control of biological systems. Computer Aided Chemical Engineering, 2003, 15, 340-345.	0.3	1
240	Anti-slug control experiments on a small-scale two-phase loop. Computer Aided Chemical Engineering, 2005, 20, 1021-1026.	0.3	1
241	Limit Cycles with Imperfect Valves:Â Implications for Controllability of Processes with Large Gains. Industrial & Engineering Chemistry Research, 2006, 45, 9024-9032.	1.8	1
242	Reply to "Further Theoretical Results on â€~Relative Gain Array for Norm-Bonded Uncertain Systems'― Industrial & Engineering Chemistry Research, 2007, 46, 8290-8290.	1.8	1
243	Optimal operation of a waste incineration plant for district heating. , 2009, , .		1
244	Optimal controlled variable selection for individual process units in self optimizing control with MIQP formulations. , 2011, , .		1
245	Economically Optimal Controlled Variables for Parallel Units – Application to Chemical Reactors1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 768-773.	0.4	1
246	Self-optimizing control for hydrogen optimization in a diesel hydrodesulfurization plant. Computer Aided Chemical Engineering, 2012, 31, 1647-1651.	0.3	1
247	Economic plantwide control: Automated controlled variable selection for a reactor-separator-recycle process. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 87-92.	0.4	1
248	Operation of energy efficient divided wall column. Computer Aided Chemical Engineering, 2013, , 235-240.	0.3	1
249	Neighbouring-Extremal Control for Steady-State Optimization Using Noisy Measurements. IFAC-PapersOnLine, 2015, 48, 698-703.	0.5	1
250	Optimization of Oil Field Production Under Gas Coning Conditions Using the Optimal Closed-Loop Estimator. IFAC-PapersOnLine, 2015, 48, 39-44.	0.5	1
251	Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column. IFAC-PapersOnLine, 2016, 49, 747-752.	0.5	1
252	Multistage Model Predictive Control with Online Scenario Tree Update using Recursive Bayesian Weighting. , 2019, , .		1

#	Article	IF	CITATIONS
253	Optimal Operation and Control of a Thermal Energy Storage System: Classical Advanced Control versus Model Predictive Control. Computer Aided Chemical Engineering, 2020, 48, 1507-1512.	0.3	1
254	Real-Time Optimal Resource Allocation and Constraint Negotiation Applied to A Subsea Oil Production Network. , 2021, , .		1
255	Anti-slug control design: Combining first principle modeling with a data-driven approach to obtain an easy-to-fit model-based control. Journal of Petroleum Science and Engineering, 2021, 207, 109096.	2.1	1
256	Control Structure Selection. , 2015, , 202-215.		1
257	A simple modeling approach to control emulsion layers in gravity separators. Computer Aided Chemical Engineering, 2019, 46, 1159-1164.	0.3	1
258	Implications of large RGA-elements on control performance [Erratum to document cited in CA107(22):201333n]. Industrial & Engineering Chemistry Research, 1988, 27, 898-898.	1.8	0
259	Comments on "Tuning controllers on distillation columns with the distillate-bottoms structure". Industrial & Engineering Chemistry Research, 1991, 30, 2019-2020.	1.8	Ο
260	pH-Neutralization: Integrated Process and Control Design. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 75-80.	0.4	0
261	Self-Optimizing Control: A Distillation Case Study. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 977-982.	0.4	0
262	Use of perfect indirect control to minimize the state deviations. Computer Aided Chemical Engineering, 2005, 20, 1219-1224.	0.3	0
263	Convex initialization of the H <inf>2</inf> -optimal static output feedback problem. , 2009, , .		0
264	Dynamic behaviour and control of extended Petlyuk distillation arrangements. Computer Aided Chemical Engineering, 2012, 30, 777-781.	0.3	0
265	Inclusion of thermodynamic equations for efficient steadystate process optimization. Computer Aided Chemical Engineering, 2016, 38, 613-618.	0.3	0
266	â"'1 adaptive anti-slug control. , 2017, , .		0
267	A Distributed Optimization Strategy for Large Scale Oil and Gas Production Systems. , 2018, , .		0
268	Combined Nonlinear Moving Horizon Estimation and Model Predictive Control Applied to a Compressor for Active Surge Control. , 2018, , .		0
269	Virtual inflow estimation with simplified tuning using cascaded and Kalman-like least squares observers. Computer Aided Chemical Engineering, 2018, 43, 1153-1158.	0.3	0
270	Combined state and parameter estimation for not fully observable dynamic systems. IFAC Journal of Systems and Control, 2020, 13, 100103.	1.1	0

#	Article	IF	CITATIONS
271	Control Structure Selection. , 2021, , 381-394.		0
272	Control Structure Selection. , 2014, , 1-16.		0
273	Non-uniqueness of robust H _{â^ž} decentralized PI-control. , 1991, , .		0
274	Control structure designfora CO2 -refrigeration system with heat recovery. Computer Aided Chemical Engineering, 2019, 46, 1243-1248.	0.3	0
275	Active constraint switching with the generalized split range control structure using the baton strategy. IFAC-PapersOnLine, 2020, 53, 3922-3927.	0.5	0
276	Real-time Optimal Resource Allocation in an Industrial Symbiotic Network using Transient Measurements*. , 2020, , .		0
277	Deoiling Hydrocyclones: An Experimental Study of Novel Control Schemes. SPE Production and Operations, 2022, , 1-14.	0.4	О