Kai Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684370/publications.pdf

Version: 2024-02-01

22	1,655 citations	15 h-index	642732 23 g-index
papers	citations	II-IIIQEX	g-muex
25 all docs	25 docs citations	25 times ranked	2112 citing authors

#	Article	IF	CITATIONS
1	Reconstitution and mechanistic dissection of the human microtubule branching machinery. Journal of Cell Biology, 2022, 221, .	5.2	11
2	A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angewandte Chemie - International Edition, 2021, 60, 5414-5420.	13.8	35
3	A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angewandte Chemie, 2021, 133, 5474-5480.	2.0	4
4	Translational Attenuation Mechanism of ErmB Induction by Erythromycin Is Dependent on Two Leader Peptides. Frontiers in Microbiology, 2021, 12, 690744.	3.5	9
5	WDR62 regulates spindle dynamics as an adaptor protein between TPX2/Aurora A and katanin. Journal of Cell Biology, 2021, 220, .	5.2	17
6	Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nature Chemical Biology, 2021, 17, 1314-1323.	8.0	29
7	Deep Learning Algorithm for Automated Detection of Polycystic Ovary Syndrome Using Scleral Images. Frontiers in Endocrinology, 2021, 12, 789878.	3.5	16
8	Expression and Purification of Microtubule-Associated Proteins from HEK293T Cells for In Vitro Reconstitution. Methods in Molecular Biology, 2020, 2101, 19-26.	0.9	3
9	Crystal Structure of a Heterotetrameric Katanin p60:p80 Complex. Structure, 2019, 27, 1375-1383.e3.	3.3	11
10	Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 2019, 10, 5236.	12.8	36
11	Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure, 2018, 26, 375-382.e4.	3.3	47
12	Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nature Cell Biology, 2017, 19, 480-492.	10.3	147
13	GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Developmental Cell, 2017, 40, 81-94.	7.0	31
14	A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nature Structural and Molecular Biology, 2017, 24, 931-943.	8.2	86
15	Structural basis of katanin p60:p80 complex formation. Scientific Reports, 2017, 7, 14893.	3.3	24
16	Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Developmental Cell, 2016, 39, 44-60.	7.0	114
17	Control of apico-basal epithelial polarity by the microtubule minus-end binding protein CAMSAP3 and spectraplakin ACF7. Journal of Cell Science, 2016, 129, 4278-4288.	2.0	84
18	Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes. Current Biology, 2016, 26, 1713-1721.	3.9	97

Kai Jiang

#	Article	IF	CITATION
19	Microtubule Minus-End Stabilization by Polymerization-Driven CAMSAP Deposition. Developmental Cell, 2014, 28, 295-309.	7.0	235
20	Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development. Neuron, 2014, 82, 1058-1073.	8.1	193
21	A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. Current Biology, 2012, 22, 1800-1807.	3.9	192
22	Centralspindlin and \hat{l}_{\pm} -catenin regulate Rho signalling at the epithelial zonula adherens. Nature Cell Biology, 2012, 14, 818-828.	10.3	224