Andrew M Kropinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684343/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete Genome Sequence of a Jumbo Bacteriophage, Escherichia Phage vB_EcoM_EC001. Microbiology Resource Announcements, 2022, 11, e0001722.	0.3	1
2	ICTV Virus Taxonomy Profile: Chaseviridae 2022. Journal of General Virology, 2022, 103, .	1.3	2
3	A Roadmap for Genome-Based Phage Taxonomy. Viruses, 2021, 13, 506.	1.5	268
4	Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. Archives of Virology, 2021, 166, 3239-3244.	0.9	24
5	Characterization of the first Pseudomonas grimontii bacteriophage, PMBT3. Archives of Virology, 2021, 166, 2887-2894.	0.9	Ο
6	Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation. Phage, 2021, 2, 170-182.	0.8	24
7	Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Systematic Biology, 2020, 69, 110-123.	2.7	89
8	Binomial nomenclature for virus species: a consultation. Archives of Virology, 2020, 165, 519-525.	0.9	51
9	From Orphan Phage to a Proposed New Family–The Diversity of N4-Like Viruses. Antibiotics, 2020, 9, 663.	1.5	39
10	VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses, 2020, 12, 1268.	1.5	274
11	Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Archives of Virology, 2020, 165, 2737-2748.	0.9	202
12	Characteristic of a Distant Relative of Teseptimavirus Genus Phages That Acquired the Ability to Lysogenize Its Host. Proceedings (mdpi), 2020, 50, .	0.2	0
13	Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2020, 165, 1253-1260.	0.9	144
14	ICTV Virus Taxonomy Profile: Herelleviridae. Journal of General Virology, 2020, 101, 362-363.	1.3	37
15	Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Archives of Virology, 2019, 164, 943-946.	0.9	102
16	Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Archives of Virology, 2019, 164, 2417-2429.	0.9	257
17	Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy. Viruses, 2019, 11, 454.	1.5	77
18	Complete genome sequence analysis of temperate <i>Erwinia</i> bacteriophages 49 and 59. Journal of Basic Microbiology, 2019, 59, 754-764.	1.8	7

#	Article	IF	CITATIONS
19	Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nature Biotechnology, 2019, 37, 632-639.	9.4	569
20	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	9.4	414
21	Strengthening the Interaction of the Virology Community with the International Committee on Taxonomy of Viruses (ICTV) by Linking Virus Names and Their Abbreviations to Virus Species. Systematic Biology, 2019, 68, 828-839.	2.7	11
22	Investigation of putative invasion determinants of Actinobacillus species using comparative genomics. Genomics, 2019, 111, 59-66.	1.3	4
23	Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2018, 163, 1125-1129.	0.9	172
24	Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Scientific Reports, 2018, 8, 6845.	1.6	26
25	A T4virus prevents biofilm formation by Trueperella pyogenes. Veterinary Microbiology, 2018, 218, 45-51.	0.8	10
26	Bacteriophage Taxonomy: An Evolving Discipline. Methods in Molecular Biology, 2018, 1693, 57-71.	0.4	34
27	Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis. Methods in Molecular Biology, 2018, 1681, 197-215.	0.4	20
28	Practical Advice on the One-Step Growth Curve. Methods in Molecular Biology, 2018, 1681, 41-47.	0.4	106
29	Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: steps towards a unified taxonomy. Journal of General Virology, 2018, 99, 1331-1343.	1.3	72
30	Two novel temperate bacteriophages infecting Streptococcus pyogenes: Their genomes, morphology and stability. PLoS ONE, 2018, 13, e0205995.	1.1	15
31	Bacteriophage research – What we have learnt and what still needs to be addressed. Research in Microbiology, 2018, 169, 481-487.	1.0	22
32	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Archives of Virology, 2018, 163, 2601-2631.	0.9	567
33	Sequence, genome organization, annotation and proteomics of the thermophilic, 47.7-kb Geobacillus stearothermophilus bacteriophage TP-84 and its classification in the new Tp84virus genus. PLoS ONE, 2018, 13, e0195449.	1.1	14
34	Comparative Analysis of 37 Acinetobacter Bacteriophages. Viruses, 2018, 10, 5.	1.5	37
35	The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions. Viruses, 2018, 10, 217.	1.5	5
36	Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Scientific Reports, 2017, 7, 46157.	1.6	23

#	Article	IF	CITATIONS
37	50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Archives of Virology, 2017, 162, 1441-1446.	0.9	72
38	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 2017, 162, 2505-2538.	0.9	506
39	A Lytic Providencia rettgeri Virus of Potential Therapeutic Value Is a Deep-Branching Member of the <i>T5virus</i> Genus. Applied and Environmental Microbiology, 2017, 83, .	1.4	13
40	Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2017, 162, 1153-1157.	0.9	57
41	Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Applied Microbiology and Biotechnology, 2017, 101, 673-684.	1.7	49
42	Thermal-Stability and Reconstitution Ability of Listeria Phages P100 and A511. Frontiers in Microbiology, 2017, 8, 2375.	1.5	34
43	Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Frontiers in Microbiology, 2016, 7, 1024.	1.5	100
44	Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis. PLoS ONE, 2016, 11, e0148344.	1.1	32
45	Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF. Applied and Environmental Microbiology, 2016, 82, 5340-5353.	1.4	44
46	Complete Genome Sequence of vB_EcoM-UFV13, a New Bacteriophage Able To Disrupt Trueperella pyogenes Biofilm. Genome Announcements, 2016, 4, .	0.8	5
47	Evaluation of Molecular Methods for Identification of Salmonella Serovars. Journal of Clinical Microbiology, 2016, 54, 1992-1998.	1.8	30
48	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 2016, 161, 2921-2949.	0.9	263
49	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	2.7	17
50	Genome Sequence of vB_AbaS_TRS1, a Viable Prophage Isolated from Acinetobacter baumannii Strain A118. Genome Announcements, 2016, 4, .	0.8	8
51	Draft Whole-Genome Sequences of 25 <i>Salmonella enterica</i> Strains Representing 24 Serovars. Genome Announcements, 2016, 4, .	0.8	4
52	Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2016, 161, 1095-1099.	0.9	83
53	Comparative analysis of multiple inducible phages from Mannheimia haemolytica. BMC Microbiology, 2015, 15, 175.	1.3	18
54	A proposed new bacteriophage subfamily: "Jerseyvirinae― Archives of Virology, 2015, 160, 1021-1033.	0.9	22

#	Article	IF	CITATIONS
55	A Suggested New Bacteriophage Genus, "Kp34likevirusâ€ , within the Autographivirinae Subfamily of Podoviridae. Viruses, 2015, 7, 1804-1822.	1.5	38
56	Multilocus Sequence Typing and Virulence Gene Profiles Associated with <i>Escherichia coli</i> from Human and Animal Sources. Foodborne Pathogens and Disease, 2015, 12, 302-310.	0.8	74
57	Taxonomic reassessment of N4-like viruses using comparative genomics and proteomics suggests a new subfamily - "Enquartavirinae― Archives of Virology, 2015, 160, 3053-3062.	0.9	36
58	Campylobacter group II phage CP21 is the prototype of a new subgroup revealing a distinct modular genome organization and host specificity. BMC Genomics, 2015, 16, 629.	1.2	16
59	Complete Genome Sequence of Pseudomonas aeruginosa Phage vB_PaeM_CEB_DP1. Genome Announcements, 2015, 3, .	0.8	6
60	Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology, 2015, 477, 144-154.	1.1	52
61	Salmonella Phages and Prophages: Genomics, Taxonomy, and Applied Aspects. Methods in Molecular Biology, 2015, 1225, 237-287.	0.4	31
62	Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocoliticaof serotype O:3. Virology Journal, 2014, 11, 188.	1.4	20
63	Characterization of Newly Isolated Lytic Bacteriophages Active against Acinetobacter baumannii. PLoS ONE, 2014, 9, e104853.	1.1	80
64	Bacteriophage behavioral ecology. Bacteriophage, 2014, 4, e29866.	1.9	71
65	A suggested classification for two groups of Campylobacter myoviruses. Archives of Virology, 2014, 159, 181-190.	0.9	63
66	UFV-P2 as a member of the Luz24likevirus genus: a new overview on comparative functional genome analyses of the LUZ24-like phages. BMC Genomics, 2014, 15, 7.	1.2	27
67	Three proposed new bacteriophage genera of staphylococcal phages: "3alikevirusâ€, "77likevirus―and "Phietalikevirus― Archives of Virology, 2014, 159, 389-398.	0.9	22
68	Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. Journal of General Virology, 2014, 95, 506-515.	1.3	59
69	Multi-laboratory evaluation of the rapid genoserotyping array (SGSA) for the identification of Salmonella serovars. Diagnostic Microbiology and Infectious Disease, 2014, 80, 185-190.	0.8	27
70	Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 – a unique member of the Siphoviridae family. Research in Microbiology, 2014, 165, 679-685.	1.0	21
71	Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax) Tj ETQq1 1 	0.78431	4 rgBT /Overl
72	Isolation and characterization of a novel bacteriophage against Mycobacterium avium subspecies paratuberculosis. Archives of Virology, 2014, 159, 2659-2674.	0.9	15

#	Article	IF	CITATIONS
73	Supersize me: Cronobacter sakazakii phage GAP32. Virology, 2014, 460-461, 138-146.	1.1	46
74	Four Escherichia coli O157:H7 Phages: A New Bacteriophage Genus and Taxonomic Classification of T1-Like Phages. PLoS ONE, 2014, 9, e100426.	1.1	55
75	The genome and proteome of Serratia bacteriophage η which forms unstable lysogens. Virology Journal, 2014, 11, 6.	1.4	15
76	What Does the Talking?: Quorum Sensing Signalling Genes Discovered in a Bacteriophage Genome. PLoS ONE, 2014, 9, e85131.	1.1	123
77	Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virology Journal, 2013, 10, 100.	1.4	112
78	The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virology Journal, 2013, 10, 76.	1.4	55
79	Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virology Journal, 2013, 10, 48.	1.4	44
80	Efficacy of bacteriophage LISTEXâ,,¢P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. International Journal of Food Microbiology, 2013, 167, 208-214.	2.1	125
81	New temperate Pseudomonas aeruginosa phage, phi297: Specific features of genome structure. Russian Journal of Genetics, 2013, 49, 806-818.	0.2	8
82	Romulus and Remus, Two Phage Isolates Representing a Distinct Clade within the Twortlikevirus Genus, Display Suitable Properties for Phage Therapy Applications. Journal of Virology, 2013, 87, 3237-3247.	1.5	79
83	The Genome of Cronobacter sakazakii Bacteriophage vB_CsaP_GAP227 Suggests a New Genus within the Autographivirinae. Genome Announcements, 2013, 1, .	0.8	10
84	Genome Sequence of Cronobacter sakazakii Myovirus vB_CsaM_GAP31. Journal of Virology, 2012, 86, 13830-13831.	1.5	9
85	Complete Genome Sequence of Actinobacillus suis H91-0380, a Virulent Serotype O2 Strain. Journal of Bacteriology, 2012, 194, 6686-6687.	1.0	13
86	Genome Sequence of the Broad-Host-Range Pseudomonas Phage Φ-S1. Journal of Virology, 2012, 86, 10239-10239.	1.5	11
87	Complete Genome Sequence of the Giant Virus OBP and Comparative Genome Analysis of the Diverse ϕKZ-Related Phages. Journal of Virology, 2012, 86, 1844-1852.	1.5	75
88	Complete Genome Sequence of the Giant Pseudomonas Phage Lu11. Journal of Virology, 2012, 86, 6369-6370.	1.5	25
89	Bacteriophage cocktail significantly reduces Escherichia coli O157. Bacteriophage, 2012, 2, 178-185.	1.9	118
90	Escherichia coli O157:H7 Typing Phage V7 Is a T4-Like Virus. Journal of Virology, 2012, 86, 10246-10246.	1.5	10

6

#	Article	IF	CITATIONS
91	Complete Genome Sequence of Vibrio parahaemolyticus Bacteriophage vB_VpaM_MAR. Journal of Virology, 2012, 86, 13138-13139.	1.5	17
92	Complete Genome Sequence of Cronobacter sakazakii Bacteriophage vB_CsaM_GAP161. Journal of Virology, 2012, 86, 13806-13807.	1.5	12
93	Genome Sequence of Temperate Vibrio parahaemolyticus Bacteriophage vB_VpaS_MAR10. Journal of Virology, 2012, 86, 13851-13852.	1.5	15
94	A suggested new bacteriophage genus: "Viunalikevirus― Archives of Virology, 2012, 157, 2035-2046.	0.9	77
95	Properties of the new D3-like Pseudomonas aeruginosa bacteriophage phiPMG1: Genome structure and prospects for the use in phage therapy. Russian Journal of Genetics, 2012, 48, 902-911.	0.2	7
96	Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3. Virology Journal, 2012, 9, 102.	1.4	23
97	Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. Virology Journal, 2012, 9, 207.	1.4	24
98	Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin-Producing Escherichia coli O157:H7. PLoS ONE, 2012, 7, e34585.	1.1	64
99	Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms. Viruses, 2012, 4, 471-487.	1.5	94
100	Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology, 2012, 426, 93-99.	1.1	49
101	The genome and proteome of a Campylobacter coli bacteriophage vB_CcoM-IBB_35 reveal unusual features. Virology Journal, 2012, 9, 35.	1.4	19
102	Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis. PLoS ONE, 2012, 7, e32271.	1.1	27
103	T4-Related Bacteriophage LIMEstone Isolates for the Control of Soft Rot on Potato Caused by â€~Dickeya solani'. PLoS ONE, 2012, 7, e33227.	1.1	169
104	Selection and Characterization of a Candidate Therapeutic Bacteriophage That Lyses the Escherichia coli O104:H4 Strain from the 2011 Outbreak in Germany. PLoS ONE, 2012, 7, e52709.	1.1	48
105	Genomic and Proteomic Characterization of the Broad-Host-Range Salmonella Phage PVP-SE1: Creation of a New Phage Genus. Journal of Virology, 2011, 85, 11265-11273.	1.5	80
106	Identification of Salmonella enterica species- and subgroup-specific genomic regions using Panseq 2.0. Infection, Genetics and Evolution, 2011, 11, 2151-2161.	1.0	10
107	Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A. Virology Journal, 2011, 8, 142.	1.4	11
108	A Shigella boydii bacteriophage which resembles Salmonella phage Vil. Virology Journal, 2011, 8, 242.	1.4	62

#	Article	IF	CITATIONS
109	Bacteriophage phi297, a new species of Pseudomonas aeruginosa temperate phages with a mosaic genome: Potential use in phage therapy. Russian Journal of Genetics, 2011, 47, 794-798.	0.2	8
110	Clostridium perfringens bacteriophages ΦCP39O and ΦCP26F: genomic organization and proteomic analysis of the virions. Archives of Virology, 2011, 156, 25-35.	0.9	32
111	The genome sequence of enterobacterial phage 7-11, which possesses an unusually elongated head. Archives of Virology, 2011, 156, 149-151.	0.9	22
112	Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 2011, 90, 1333-1345.	1.7	62
113	Characterization of a Vil-like Phage Specific to Escherichia coli O157:H7. Virology Journal, 2011, 8, 430.	1.4	60
114	Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh. MBio, 2011, 2, e00334-10.	1.8	115
115	Gene Cluster Conferring Streptomycin, Sulfonamide, and Tetracycline Resistance in <i>Escherichia coli</i> O157:H7 Phage Types 23, 45, and 67. Applied and Environmental Microbiology, 2011, 77, 1900-1903.	1.4	14
116	Genome and Proteome of Campylobacter jejuni Bacteriophage NCTC 12673. Applied and Environmental Microbiology, 2011, 77, 8265-8271.	1.4	61
117	Rapid Genoserotyping Tool for Classification of Salmonella Serovars. Journal of Clinical Microbiology, 2011, 49, 2954-2965.	1.8	46
118	T1-like Viruses. , 2011, , 1821-1830.		2
119	Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics, 2010, 11, 461.	1.2	249
120	Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics, 2010, 11, 667.	1.2	193
121	Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the "N4-like viruses― Virology, 2010, 405, 26-30.	1.1	86
122	The O28 Antigen Gene Clusters ofSalmonella entericasubsp.entericaSerovar Dakar and Serovar Pomona Are Different. International Journal of Microbiology, 2010, 2010, 1-8.	0.9	2
123	Lineage and Host Source Are Both Correlated with Levels of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains. Applied and Environmental Microbiology, 2010, 76, 474-482.	1.4	51
124	Complete Genomic Sequence of Bacteriophage Felix O1. Viruses, 2010, 2, 710-730.	1.5	72
125	Escherichia coli O123 O antigen genes and polysaccharide structure are conserved in some Salmonella enterica serogroups. Journal of Medical Microbiology, 2009, 58, 884-894.	0.7	8
126	Complete Genome of the Broad-Host-Range <i>Erwinia amylovora</i> Phage ΦEa21-4 and Its Relationship to <i>Salmonella</i> Phage Felix O1. Applied and Environmental Microbiology, 2009, 75, 2139-2147.	1.4	61

#	Article	IF	CITATIONS
127	Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiology, 2009, 9, 224.	1.3	245
128	Characterization of the cell surface glycolipid from Spirochaeta aurantia. Glycoconjugate Journal, 2009, 26, 1097-1108.	1.4	2
129	Position paper: The creation of a rational scheme for the nomenclature of viruses of <i>Bacteria</i> and <i>Archaea</i> . Environmental Microbiology, 2009, 11, 2775-2777.	1.8	184
130	Comparative analysis of the widespread and conserved PB1â€like viruses infecting <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2009, 11, 2874-2883.	1.8	85
131	The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1. Virology Journal, 2009, 6, 41.	1.4	34
132	Bacteriophage Enrichment from Water and Soil. Methods in Molecular Biology, 2009, 501, 15-21.	0.4	166
133	Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. Methods in Molecular Biology, 2009, 501, 69-76.	0.4	645
134	Measurement of the Rate of Attachment of Bacteriophage to Cells. Methods in Molecular Biology, 2009, 501, 151-155.	0.4	102
135	Measurement of the Bacteriophage Inactivation Kinetics with Purified Receptors. Methods in Molecular Biology, 2009, 501, 157-160.	0.4	9
136	Approaches to the Compositional Analysis of DNA. Methods in Molecular Biology, 2009, 502, 11-17.	0.4	1
137	In Sffamily Identification of Genes in Bacteriophage DNA. Methods in Molecular Biology, 2009, 502, 57-89.	0.4	25
138	Internet Resources of Interest to Bacteriophage Workers. Methods in Molecular Biology, 2009, 502, 365-373.	0.4	0
139	Methods in molecular biology. Introduction. Methods in Molecular Biology, 2009, 502, xiii-xxii.	0.4	1
140	Genomic analysis of bacteriophage ε34 of Salmonella entericaserovar Anatum (15+). BMC Microbiology, 2008, 8, 227.	1.3	34
141	The genome and proteome of the Kluyvera bacteriophage Kvp1 – another member of the T7-like Autographivirinae. Virology Journal, 2008, 5, 122.	1.4	12
142	Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Research in Microbiology, 2008, 159, 406-414.	1.0	273
143	Genomic O Island 122, Locus for Enterocyte Effacement, and the Evolution of Virulent Verocytotoxin-Producing <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 5832-5840.	1.0	62
144	Complete Genomic Sequence of Bacteriophage φEcoM-GJ1, a Novel Phage That Has Myovirus Morphology and a Podovirus-Like RNA Polymerase. Applied and Environmental Microbiology, 2008, 74, 516-525.	1.4	46

#	Article	IF	CITATIONS
145	An analysis of initiation codon utilization in the Domain Bacteria – concerns about the quality of bacterial genome annotation. Microbiology (United Kingdom), 2008, 154, 2559-2661.	0.7	56
146	Applicability of Phylogenetic Methods for Characterizing the Public Health Significance of Verocytotoxin-Producing Escherichia coli Strains. Applied and Environmental Microbiology, 2008, 74, 1671-1675.	1.4	23
147	Curated list of prokaryote viruses with fully sequenced genomes. Research in Microbiology, 2007, 158, 555-566.	1.0	41
148	Salmonella Phages and Prophages—Genomics and Practical Aspects. Methods in Molecular Biology, 2007, 394, 133-175.	0.4	62
149	Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Veterinary Microbiology, 2007, 124, 47-57.	0.8	99
150	The genome of $\hat{l}\mu 15,$ a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology, 2007, 369, 234-244.	1.1	60
151	Phage Therapy Everything Old Is New again. Canadian Journal of Infectious Diseases and Medical Microbiology, 2006, 17, 297-306.	0.7	58
152	The genome of BCJA1c: a bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles, 2005, 9, 99-109.	0.9	12
153	The genome of the Pseudomonas aeruginosa generalized transducing bacteriophage F116. Gene, 2005, 346, 187-194.	1.0	55
154	The structure and biological characteristics of the Spirochaeta aurantia outer membrane glycolipid LGLB. FEBS Journal, 2004, 271, 4685-4695.	0.2	7
155	Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Molecular Microbiology, 2004, 39, 1237-1247.	1.2	86
156	The genome and proteome of coliphage T1. Virology, 2004, 318, 245-266.	1.1	84
157	Nature of the genome of the saprophytic spirochete Spirochaeta aurantia and its ribosomal RNA operons. Canadian Journal of Microbiology, 2004, 50, 967-971.	0.8	1
158	The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida—evidence for close relationship to the T7 group. Virology, 2003, 311, 305-315.	1.1	56
159	Enhancement of a two-phase partitioning bioreactor system by modification of the microbial catalyst: Demonstration of concept. Biotechnology and Bioengineering, 2002, 79, 587-594.	1.7	33
160	Identification and characterization of the AgmR regulator of Pseudomonas putida : role in alcohol utilization. Applied Microbiology and Biotechnology, 2002, 58, 469-475.	1.7	14
161	Expanded Application of a Two-Phase Partitioning Bioreactor through Strain Development and New Feeding Strategies. Biotechnology Progress, 2002, 18, 458-464.	1.3	9
162	Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. , 2001, 39, 1237.		4

#	Article	IF	CITATIONS
163	Sequence of the Genome of the Temperate, Serotype-Converting,Pseudomonas aeruginosa Bacteriophage D3. Journal of Bacteriology, 2000, 182, 6066-6074.	1.0	110
164	Sequence of the Genome of SalmonellaBacteriophage P22. Journal of Bacteriology, 2000, 182, 6472-6481.	1.0	119
165	Transfer RNA genes and their significance to codon usage in the <i>Pseudomonas aeruginosa</i> lamboid bacteriophage D3. Canadian Journal of Microbiology, 1999, 45, 791-796.	0.8	13
166	Cloning and Analysis of the Capsid Morphogenesis Genes of <i>Pseudomonas aeruginosa</i> Bacteriophage D3: Another Example of Protein Chain Mail?. Journal of Bacteriology, 1999, 181, 7221-7227.	1.0	26
167	Transfer RNA genes and their significance to codon usage in the <i>Pseudomonas aeruginosa</i> lamboid bacteriophage D3. Canadian Journal of Microbiology, 1999, 45, 791-796.	0.8	4
168	Overexpression, purification, and analysis of the c1 repressor protein of Pseudomonas aeruginosa bacteriophage D3. Canadian Journal of Microbiology, 1997, 43, 220-226.	0.8	10
169	Functional analysis of sigma-70 consensus promoters in <i>Pseudomonas aeruginosa</i> and <i>Escherichia coli</i> . Canadian Journal of Microbiology, 1997, 43, 981-985.	0.8	28
170	Genetic and sequence analysis of the cos region of the temperate Pseudomonas aeruginosa bacteriophage, D3. Gene, 1996, 177, 47-53.	1.0	24
171	Physical mapping of several heat-shock genes in <i>Pseudomonas aeruginosa</i> and the cloning of the <i>mopA</i> (GroEL) gene. Canadian Journal of Microbiology, 1996, 42, 326-334.	0.8	3
172	Cloning the gene for the heat shock response positiwe regulator (sigma 32 homolog) from Pseudomonas aeruginosa. Canadian Journal of Microbiology, 1995, 41, 75-87.	0.8	29
173	Sinusoidal 60 Hz electromagnetic fields failed to induce changes in protein synthesis inEscherichia coli. Bioelectromagnetics, 1994, 15, 283-291.	0.9	15
174	Nucleotide Sequence of the Pseudomonas aeruginosa Insertion Sequence IS222: Another Member of the IS3 Family. Plasmid, 1994, 31, 222-228.	0.4	26
175	Deletion and Transposon Mutagenesis and Sequence Analysis of the pRO1600 OriR Region Found in the Broad-Host-Range Plasmids of the pQF Series. Plasmid, 1994, 31, 265-274.	0.4	37
176	High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiology Letters, 1990, 70, 221-226.	0.7	101
177	Construction of broad-host-range vectors for the selection of divergent promoters. Gene, 1990, 90, 145-148.	1.0	26
178	High efficiency electroporation of using frozen cell suspensions. FEMS Microbiology Letters, 1990, 70, 221-225.	0.7	39
179	Construction of broad-host-range vectors for general cloning and promoter selection in Pseudomonas and Escherichia coli. Gene, 1989, 77, 205-210.	1.0	52
180	Effect of pH and acrylamide concentration on the separation of lipopolysaccharides in polyacrylamide gels. Current Microbiology, 1988, 16, 191-194.	1.0	14

#	Article	IF	CITATIONS
181	The intracellular polyglucose storage granules of Spirochaeta aurantia. Archives of Microbiology, 1988, 150, 289-295.	1.0	6
182	Characterization of non-typable strains of Pseudomonas aeruginosa from cystic fibrosis patients by means of monoclonal antibodies and SDS-polyacrylamide gel electrophoresis. Serodiagnosis and Immunotherapy in Infectious Disease, 1988, 2, 365-374.	0.2	15
183	Serotype-converting bacteriophage D3 of Pseudomonas aeruginosa: vegetative and prophage restriction maps. Gene, 1987, 52, 51-57.	1.0	10
184	Pathogenicity of lipopolysaccharide mutants of Pseudomonas aeruginosa for larvae of Galleria mellonella: Bacterial properties associated with virulence. Journal of Invertebrate Pathology, 1986, 47, 48-55.	1.5	37
185	Effect of lipopolysaccharide mutations and temperature on plasmid transformation efficiency in Pseudomonas aeruginosa. Canadian Journal of Microbiology, 1986, 32, 436-438.	0.8	82
186	A synthesis of 2-deoxy-d-arabino-hexitol and its oxidation to 5-deoxy-d-hreo-hexulose ("5-deoxy-d-fructoseâ€) using immobilized cells of Gluconobacter oxydans. Carbohydrate Research, 1986, 156, 19-24.	1.1	11
187	Preparation of l-fructose and d-sorbose by the bacterial oxidation of l-mannitol and l-glucitol, respectively. Carbohydrate Research, 1986, 155, 262-265.	1.1	27
188	DNA-dependent RNA polymerase fromSpirochaeta aurantia. FEMS Microbiology Letters, 1986, 35, 205-210.	0.7	11
189	The basis of silver staining of bacterial lipopolysaccharides in polyacrylamide gels. Current Microbiology, 1986, 13, 29-31.	1.0	18
190	Bioconversion of propionic, valeric, and 4-hydroxybutyric acids into the corresponding alcohols byClostridium acetobutylicum NRRL 527. Current Microbiology, 1986, 13, 215-219.	1.0	17
191	Structure and Functions of Pseudomonas aeruginosa Lipopolysaccharide. Antibiotics and Chemotherapy, 1985, 36, 58-73.	0.5	52
192	Purification and properties of a novel polyol dehydrogenase of bacterial origin. FEMS Microbiology Letters, 1984, 25, 5-10.	0.7	4
193	The virulence of protease and cell surface mutants of Pseudomonas aeruginosa for the larvae of Galleria mellonella. Journal of Invertebrate Pathology, 1982, 39, 395-400.	1.5	25
194	Coliphage T7 receptors are present in Pseudomonasaeruginosa rough lipopolysaccharides. Biochemical and Biophysical Research Communications, 1981, 99, 1185-1190.	1.0	8
195	Separation of amino sugars and related compounds by two-dimensional thin-layer chromatography. Journal of Chromatography A, 1980, 195, 127-132.	1.8	15
196	The extraction and analysis of lipopolysaccharides from <i>Pseudomonas aeruginosa</i> strain PAO, and three rough mutants. Canadian Journal of Microbiology, 1979, 25, 390-398.	0.8	79
197	The nature of <i>Pseudomonas aeruginosa</i> strain PAO bacteriophage receptors. Canadian Journal of Microbiology, 1977, 23, 653-658.	0.8	35
198	Bacteriophage DNA: Correlation of Buoyant Density, Melting Temperature, and the Chemically Determined Base Composition. Journal of Virology, 1974, 13, 753-756.	1.5	12

# ARTICLE IF	CITATIONS
199 Lysogenic Conversion in Bacteria of Importance to the Food Industry. , 0, , 157-198.	12