Philip T Metzger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684274/publications.pdf

Version: 2024-02-01

		567281	552781
52	852	15	26
papers	citations	h-index	g-index
55 all docs	55 docs citations	55 times ranked	521 citing authors
un doco	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluation of Different RANS Turbulence Models for Rocket Plume on Mars Environment. , 2022, , .		О
2	Rocket Plume Interacting with Mars Soil Particulates. , 2022, , .		0
3	Numerical estimations of lunar regolith trajectories and damage potential due to rocket plumes. Acta Astronautica, 2022, 195, 169-182.	3.2	9
4	Instant Landing Pads for Lunar Missions. , 2021, , .		6
5	NASA Lunabotics Robotic Mining Competition 10th Anniversary (2010–2019): Taxonomy and Technology Review. , 2021, , .		2
6	Deep Regolith Cratering and Plume Effects Modeling for Lunar Landing Sites. , 2021, , .		2
7	Practical and Economic Rocket Mining of Lunar Ice. , 2021, , .		O
8	The Damage to Lunar Orbiting Spacecraft Caused by the Ejecta of Lunar Landers. , 2021, , .		3
9	Pad for Humanity: Lunar Spaceports as Critical Shared Infrastructure., 2021,,.		1
10	Off Earth Landing and Launch Pad Constructionâ€"A Critical Technology for Establishing a Long-Term Presence on Extraterrestrial Surfaces. , 2021, , .		7
11	Phobos regolith simulants PGI-1 and PCA-1. Advances in Space Research, 2021, 67, 3308-3327.	2.6	5
12	Moons are planets: Scientific usefulness versus cultural teleology in the taxonomy of planetary science. Icarus, 2021, , 114768.	2.5	3
13	Thermal Extraction of Volatiles from Lunar and Asteroid Regolith in Axisymmetric Crank–Nicolson Modeling. Journal of Aerospace Engineering, 2020, 33, .	1.4	10
14	Model for asteroid regolith to guide simulant development. Icarus, 2020, 350, 113904.	2.5	3
15	Thermal extraction of water ice from the lunar surface - A 3D numerical model. Planetary and Space Science, 2020, 193, 105082.	1.7	18
16	Simulated asteroid materials based on carbonaceous chondrite mineralogies. Meteoritics and Planetary Science, 2019, 54, 2067-2082.	1.6	28
17	Measuring the fidelity of asteroid regolith and cobble simulants. Icarus, 2019, 321, 632-646.	2.5	19
18	Commercial lunar propellant architecture: A collaborative study of lunar propellant production. Reach, 2019, 13, 100026.	0.7	65

#	Article	IF	CITATIONS
19	The reclassification of asteroids from planets to non-planets. Icarus, 2019, 319, 21-32.	2.5	2
20	A phenomenological relationship between vertical air motion and disdrometer derived A - b coefficients. Atmospheric Research, 2018, 208, 94-105.	4.1	4
21	Space development and space science together, an historic opportunity. Space Policy, 2016, 37, 77-91.	1.5	29
22	Rocket Exhaust Blowing Soil in Near Vacuum Conditions Is Faster than Predicted by Continuum Scaling Laws. , $2016, , .$		4
23	Design, Test, and Simulation of Lunar and Mars Landing Pad Soil Stabilization Built with In Situ Rock Utilization. , 2016, , .		5
24	Analysis of Thermal/Water Propulsion for CubeSats that Refuel in Space. , 2016, , .		2
25	Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements. Acta Geophysica, 2015, 63, 568-599.	2.0	27
26	In situ disdrometer calibration using multiple DSD moments. Acta Geophysica, 2014, 62, 1450-1477.	2.0	4
27	Affordable, Rapid Bootstrapping of the Space Industry and Solar System Civilization. Journal of Aerospace Engineering, 2013, 26, 18-29.	1.4	42
28	Special Issue on In Situ Resource Utilization. Journal of Aerospace Engineering, 2013, 26, 1-4.	1.4	12
29	Role of collisions in erosion of regolith during a lunar landing. Physical Review E, 2013, 87, 022205.	2.1	25
30	Further Analysis on the Mystery of the Surveyor III Dust Deposits. , 2012, , .		3
31	Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site. Journal of Geophysical Research, $2011,116,.$	3.3	65
32	Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III. Icarus, 2011, 211, 1089-1102.	2.5	72
33	Permeability of JSC-1A: A lunar soil simulant. Icarus, 2011, 212, 383-389.	2.5	25
34	Apollo video photogrammetry estimation of plume impingement effects. Icarus, 2011, 214, 46-52.	2.5	47
35	The Physical State of Lunar Soil in the Permanently Shadowed Craters of the Moon. , 2010, , .		5
36	Soil Test Apparatus for Lunar Surfaces. , 2010, , .		19

#	Article	IF	CITATIONS
37	Rocket Cratering in Simulated Lunar and Martian Environments. , 2010, , .		О
38	Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch. Acta Astronautica, 2010, 67, 217-229.	3.2	3
39	Cratering and Blowing Soil by Rocket Engines during Lunar Landings. Advances in Engineering, 2010, , 551-576.	0.1	14
40	Jet-Induced Cratering of a Granular Surface with Application to Lunar Spaceports. Journal of Aerospace Engineering, 2009, 22, 24-32.	1.4	72
41	Hyperstaticity and loops in frictional granular packings. , 2009, , .		3
42	Craters Formed in Granular Beds by Impinging Jets of Gas. , 2009, , .		26
43	ISRU Implications for Lunar and Martian Plume Effects. , 2009, , .		32
44	Spatial and Temporal Extrapolation of Disdrometer Size Distributions Based on a Lagrangian Trajectory Model of Falling Rain. The Open Atmospheric Science Journal, 2009, 3, 172-186.	0.5	2
45	Htheorem for contact forces in granular materials. Physical Review E, 2008, 77, 011307.	2.1	12
46	Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil., 2008,,.		12
47	Lagrangian Trajectory Modeling of Lunar Dust Particles. , 2008, , .		18
48	Apollo Video Photogrammetry Estimation of Plume Impingement Effects., 2008,,.		10
49	Elegance of Disordered Granular Packings: A Validation of Edward's Hypothesis. Physical Review Letters, 2005, 94, 148001.	7.8	22
50	Force Density Function Relationships in 2-D Granular Media. SIAM Journal on Applied Mathematics, 2005, 65, 1855-1869.	1.8	3
51	Granular contact force density of states and entropy in a modified Edwards ensemble. Physical Review E, 2004, 70, 051303.	2.1	40
52	Comment on "Mechanical analog of temperature for the description of force distribution in static granular packings― Physical Review E, 2004, 69, 053301; discussion 053302.	2.1	8