Isaac Garcia-Bosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5684161/publications.pdf

Version: 2024-02-01

304743 434195 2,739 31 22 31 citations h-index g-index papers 33 33 33 2992 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synthesis and Reactivity of Ampy-Based Ruthenium(II) Catalysts for Transfer Hydrogenation of Ketones. Organometallics, 2022, 41, 686-697.	2.3	3
2	Synthetic Copper Complexes as Cu-Dependent Monooxygenase Model Systems and Catalysts for Dioxygen Reduction and Water Oxidation., 2021,, 436-473.		3
3	Mononuclear and Dinuclear Copper Complexes of Tridentate Redoxâ€active Ligands with Tunable Hâ€bonding Donors: Structure, Spectroscopy and H + /e â^ Reactivity. Chemistry - an Asian Journal, 2021, 16, 1608-1618.	3.3	3
4	De Novo Design of a Self-Assembled Artificial Copper Peptide that Activates and Reduces Peroxide. ACS Catalysis, 2021, 11, 10267-10278.	11,2	15
5	Practical Oneâ€Pot Multistep Synthesis of 2Hâ€1,3â€Benzoxazines Using Copper, Hydrogen Peroxide, and Triethylamine. European Journal of Organic Chemistry, 2021, 2021, 4536-4540.	2.4	4
6	Cu-promoted intramolecular hydroxylation of C H bonds using directing groups with varying denticity. Journal of Inorganic Biochemistry, 2021, 223, 111557.	3.5	9
7	Structure, Spectroscopy, and Reactivity of a Mononuclear Copper Hydroxide Complex in Three Molecular Oxidation States. Journal of the American Chemical Society, 2020, 142, 12265-12276.	13.7	25
8	Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O ₂ Model Systems to Organometallic Transformations. Chemical Reviews, 2019, 119, 2954-3031.	47.7	201
9	Tunable intramolecular multicenter H-bonding interactions in first-row metal complexes bearing bidentate redox-active ligands. Journal of Coordination Chemistry, 2019, 72, 1346-1357.	2.2	3
10	Directed Hydroxylation of sp ² and sp ³ Câ€"H Bonds Using Stoichiometric Amounts of Cu and H ₂ O ₂ . Inorganic Chemistry, 2019, 58, 7584-7592.	4.0	24
11	Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups. Journal of the American Chemical Society, 2018, 140, 16625-16634.	13.7	63
12	Substrate and Lewis Acid Coordination Promote O–O Bond Cleavage of an Unreactive L _{2< sub>Cu^{II< sup>_{2< sub>(O_{2< sub>^{2–< sup>) Species to Form L_{2< sub>Cores with Enhanced Oxidative Reactivity. Journal of the American Chemical Society, 2017, 139, 3186-3195.}}}}}}	13.7	50
13	Copper-Catalyzed Oxidation of Alkanes under Mild Conditions. Synlett, 2017, 28, 1237-1243.	1.8	12
14	Decoding the Mechanism of Intramolecular Cu-Directed Hydroxylation of sp ³ C–H Bonds. Journal of Organic Chemistry, 2017, 82, 7887-7904.	3.2	61
15	Copperâ€Catalyzed Oxidation of Alkanes with H ₂ O ₂ under a Fentonâ€like Regime. Angewandte Chemie - International Edition, 2016, 55, 12873-12876.	13.8	98
16	Copperâ€Catalyzed Oxidation of Alkanes with H ₂ O ₂ under a Fentonâ€like Regime. Angewandte Chemie, 2016, 128, 13065-13068.	2.0	19
17	Dioxygen Activation by a Macrocyclic Copper Complex Leads to a Cu ₂ O ₂ Core with Unexpected Structure and Reactivity. Chemistry - A European Journal, 2016, 22, 5133-5137.	3.3	25
18	Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome <i>c</i> Oxidase Interactions with Dioxygen and Nitrogen Oxides. Accounts of Chemical Research, 2015, 48, 2462-2474.	15.6	89

#	Article	IF	Citations
19	Selective <i>Ortho </i> â∈Hydroxylationâ∈"Defluorination of 2â∈Fluorophenolates with a Bis(μâ€oxo)dicopper(III) Species. Angewandte Chemie - International Edition, 2014, 53, 9608-9612.	13.8	34
20	Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric–Superoxo Complex. Journal of the American Chemical Society, 2014, 136, 9925-9937.	13.7	125
21	Asymmetric Epoxidation with H ₂ O ₂ by Manipulating the Electronic Properties of Non-heme Iron Catalysts. Journal of the American Chemical Society, 2013, 135, 14871-14878.	13.7	216
22	Highly Stereoselective Epoxidation with H ₂ O ₂ Catalyzed by Electron-Rich Aminopyridine Manganese Catalysts. Organic Letters, 2013, 15, 6158-6161.	4.6	80
23	Electronic Effects on Singleâ€Site Iron Catalysts for Water Oxidation. Chemistry - A European Journal, 2013, 19, 8042-8047.	3.3	118
24	Ironâ€Catalyzed CH Hydroxylation and Olefin <i>cis</i> òâ€Dihydroxylation Using a Singleâ€Electron Oxidant and Water as the Oxygenâ€Atom Source. Chemistry - A European Journal, 2012, 18, 13269-13273.	3.3	48
25	Electrophilic Arene Hydroxylation and Phenol OH Oxidations Performed by an Unsymmetric μâ€Î×sup>1:η ¹ â€O ₂ â€Peroxo Dicopper(II) Complex. Chemistry - A European J 2012, 18, 2113-2122.	ഠശ്ശുമി,	27
26	Stereoselective Epoxidation of Alkenes with Hydrogen Peroxide using a Bipyrrolidineâ€Based Family of Manganese Complexes. Advanced Synthesis and Catalysis, 2012, 354, 65-70.	4.3	72
27	Efficient water oxidation catalysts based on readily available iron coordination complexes. Nature Chemistry, 2011, 3, 807-813.	13.6	716
28	O ₂ â€Activation and Selective Phenolate <i>ortho</i> â€Hydroxylation by an Unsymmetric Dicopper μâ€Ê ¹ i<:i>í· ¹ â€Peroxido Complex. Angewandte Chemie - International Edition, 2010, 49, 2406-2409.	13.8	104
29	A Broad Substrateâ€Scope Method for Fast, Efficient and Selective Hydrogen Peroxideâ€Epoxidation. Advanced Synthesis and Catalysis, 2009, 351, 348-352.	4.3	109
30	Stereospecific CH Oxidation with H ₂ O ₂ Catalyzed by a Chemically Robust Siteâ€ksolated Iron Catalyst. Angewandte Chemie - International Edition, 2009, 48, 5720-5723.	13.8	254
31	Tyrosinase‣ike Reactivity in a Cu ^{III} ₂ (νâ€O) ₂ Species. Chemistry - A European Journal, 2008, 14, 3535-3538.	3.3	73