Julian E Stelzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5683985/publications.pdf

Version: 2024-02-01

331538 345118 1,524 36 21 36 citations h-index g-index papers 36 36 36 1133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acceleration of Crossbridge Kinetics by Protein Kinase A Phosphorylation of Cardiac Myosin Binding Protein C Modulates Cardiac Function. Circulation Research, 2008, 103, 974-982.	2.0	163
2	Differential Roles of Cardiac Myosin-Binding Protein C and Cardiac Troponin I in the Myofibrillar Force Responses to Protein Kinase A Phosphorylation. Circulation Research, 2007, 101, 503-511.	2.0	149
3	Protein Kinase A–Mediated Acceleration of the Stretch Activation Response in Murine Skinned Myocardium Is Eliminated by Ablation of cMyBP-C. Circulation Research, 2006, 99, 884-890.	2.0	120
4	Ablation of Cardiac Myosin-Binding Protein-C Accelerates Stretch Activation in Murine Skinned Myocardium. Circulation Research, 2006, 98, 1212-1218.	2.0	106
5	Ablation of Myosin-Binding Protein-C Accelerates Force Development in Mouse Myocardium. Biophysical Journal, 2006, 90, 4119-4127.	0.2	101
6	Acceleration of Stretch Activation in Murine Myocardium due to Phosphorylation of Myosin Regulatory Light Chain. Journal of General Physiology, 2006, 128, 261-272.	0.9	76
7	Activation Dependence of Stretch Activation in Mouse Skinned Myocardium: Implications for Ventricular Function. Journal of General Physiology, 2006, 127, 95-107.	0.9	75
8	Role of myosin heavy chain composition in the stretch activation response of rat myocardium. Journal of Physiology, 2007, 579, 161-173.	1.3	54
9	Contributions of Stretch Activation to Length-dependent Contraction in Murine Myocardium. Journal of General Physiology, 2006, 128, 461-471.	0.9	53
10	Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C. Journal of Molecular and Cellular Cardiology, 2015, 85, 262-272.	0.9	44
11	Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle. Journal of Physiology, 2008, 586, 5203-5214.	1.3	43
12	Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Frontiers in Physiology, 2016, 7, 38.	1.3	43
13	The contributions of cardiac myosin binding protein C and troponin I phosphorylation to βâ€adrenergic enhancement of <i>in vivo</i> cardiac function. Journal of Physiology, 2016, 594, 669-686.	1.3	42
14	Impact of the Myosin Modulator Mavacamten on Force Generation and Crossâ€Bridge Behavior in a Murine Model of Hypercontractility. Journal of the American Heart Association, 2018, 7, e009627.	1.6	41
15	Dose-Dependent Effects of the Myosin Activator Omecamtiv Mecarbil on Cross-Bridge Behavior and Force Generation in Failing Human Myocardium. Circulation: Heart Failure, 2017, 10, .	1.6	38
16	Determination of rate constants for turnover of myosin isoforms in rat myocardium: implications for in vivo contractile kinetics. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H247-H256.	1.5	37
17	In Vivo Cardiac Myosin Binding Protein C Gene Transfer Rescues Myofilament Contractile Dysfunction in Cardiac Myosin Binding Protein C Null Mice. Circulation: Heart Failure, 2012, 5, 635-644.	1.6	37
18	Cardiac Myosin Binding Protein C and Its Phosphorylation Regulate Multiple Steps in the Cross-Bridge Cycle of Muscle Contraction. Biochemistry, 2012, 51, 3292-3301.	1.2	34

#	Article	lF	CITATIONS
19	Length-dependent changes in contractile dynamics are blunted due to cardiac myosin binding protein-C ablation. Frontiers in Physiology, 2014, 5, 461.	1.3	33
20	The contribution of cardiac myosin binding protein Ser282 phosphorylation to the rate of force generation and <i>in vivo</i> cardiac contractility. Journal of Physiology, 2014, 592, 3747-3765.	1.3	30
21	Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice. Journal of Biological Chemistry, 2019, 294, 10913-10927.	1.6	24
22	Cardiac myosin binding protein-C Ser $\langle \sup 302 \rangle$ phosphorylation regulates cardiac \hat{l}^2 -adrenergic reserve. Science Advances, 2017, 3, e1602445.	4.7	22
23	Expression of cardiac troponin T with COOH-terminal truncation accelerates cross-bridge interaction kinetics in mouse myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1756-H1761.	1.5	21
24	Cardiac Myosin Binding Protein C Insufficiency Leads to Early Onset of Mechanical Dysfunction. Circulation: Cardiovascular Imaging, 2012, 5, 127-136.	1.3	20
25	AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice. JCI Insight, 2020, 5, .	2.3	18
26	Cardiac myosin binding protein-C: a novel sarcomeric target for gene therapy. Pflugers Archiv European Journal of Physiology, 2014, 466, 225-230.	1.3	14
27	The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 661-677.	1.8	14
28	Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output. Journal of Applied Physiology, 2017, 122, 520-530.	1.2	13
29	Altered in vivo left ventricular torsion and principal strains in hypothyroid rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1577-H1587.	1.5	12
30	Sarcomere-based genetic enhancement of systolic cardiac function in a murine model of dilated cardiomyopathy. International Journal of Cardiology, 2018, 273, 168-176.	0.8	12
31	Lost in translation: Interpreting cardiac muscle mechanics data in clinical practice. Archives of Biochemistry and Biophysics, 2019, 662, 213-218.	1.4	12
32	cMyBPC phosphorylation modulates the effect of omecamtiv mecarbil on myocardial force generation. Journal of General Physiology, $2021,153,.$	0.9	10
33	Molecular characterization of linker and loop-mediated structural modulation and hinge motion in the C4-C5 domains of cMyBPC. Journal of Structural Biology, 2022, 214, 107856.	1.3	5
34	Identification of Phosphorylation and Other Post-Translational Modifications in the Central C4C5 Domains of Murine Cardiac Myosin Binding Protein C. ACS Omega, 2022, 7, 14189-14202.	1.6	4
35	Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 457-469.	2.5	3
36	Prof. Cristobal dos Remedios and the Sydney Heart Bank: enabling translatable heart failure research. Biophysical Reviews, 2020, 12, 783-784.	1.5	1