

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568371/publications.pdf Version: 2024-02-01

LIN YU

#	Article	IF	CITATIONS
1	Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities. CrystEngComm, 2013, 15, 7010.	1.3	179
2	In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1730-1736.	5.2	172
3	Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chemical Engineering Journal, 2013, 220, 320-327.	6.6	133
4	Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. Journal of Power Sources, 2014, 251, 202-207.	4.0	127
5	Highly Efficient Hydrogenation of Nitrobenzene to Aniline over Pt/CeO ₂ Catalysts: The Shape Effect of the Support and Key Role of Additional Ce ³⁺ Sites. ACS Catalysis, 2020, 10, 10350-10363.	5.5	117
6	Enhanced catalytic performance by oxygen vacancy and active interface originated from facile reduction of OMS-2. Chemical Engineering Journal, 2018, 331, 626-635.	6.6	100
7	Microwave-Assisted Synthesis of Fe ₃ O ₄ Nanocrystals with Predominantly Exposed Facets and Their Heterogeneous UVA/Fenton Catalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 29203-29212.	4.0	91
8	High-performance α-MnO2 nanowire electrode for supercapacitors. Applied Energy, 2015, 153, 94-100.	5.1	90
9	Mesoporous α-MnO 2 microspheres with high specific surface area: Controlled synthesis and catalytic activities. Chemical Engineering Journal, 2016, 286, 114-121.	6.6	87
10	Three-dimensional radial α-MnO 2 synthesized from different redox potential for bifunctional oxygen electrocatalytic activities. Journal of Power Sources, 2017, 362, 332-341.	4.0	75
11	Novel Synthesis of Birnessite-Type MnO ₂ Nanostructure for Water Treatment and Electrochemical Capacitor. Industrial & Engineering Chemistry Research, 2013, 52, 9586-9593.	1.8	64
12	Multifunctional Free-Standing Membrane from the Self-assembly of Ultralong MnO ₂ Nanowires. ACS Applied Materials & Interfaces, 2013, 5, 7458-7464.	4.0	63
13	A facile one-pot hydrothermal synthesis of β-MnO2 nanopincers and their catalytic degradation of methylene blue. Journal of Solid State Chemistry, 2014, 217, 57-63.	1.4	63
14	Controllable Growth of Hierarchical NiCo2O4 Nanowires and Nanosheets on Carbon Fiber Paper and their Morphology-Dependent Pseudocapacitive Performances. Electrochimica Acta, 2014, 133, 382-390.	2.6	62
15	Promoting Effect of Ce in Ce/OMS-2 Catalyst for Catalytic Combustion of Dimethyl Ether. Catalysis Letters, 2011, 141, 111-119.	1.4	59
16	Novel Ordered Mesoporous γ-MnO ₂ Catalyst for High-Performance Catalytic Oxidation of Toluene and <i>o</i> -Xylene. Industrial & Engineering Chemistry Research, 2019, 58, 13926-13934.	1.8	54
17	C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting. Nanoscale, 2019, 11, 17084-17092.	2.8	54
18	The art of balance: Engineering of structure defects and electrical conductivity of α-MnO2 for oxygen reduction reaction. Electrochimica Acta, 2018, 283, 459-466.	2.6	50

Lin Yu

#	Article	IF	CITATIONS
19	Phase controllable synthesis of three-dimensional star-like MnO ₂ hierarchical architectures as highly efficient and stable oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 16462-16468.	5.2	48
20	Adsorption and oxidation of arsenic by two kinds of β-MnO2. Journal of Hazardous Materials, 2019, 373, 232-242.	6.5	44
21	High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires. Scientific Reports, 2015, 5, 17858.	1.6	42
22	A facile one-pot hydrothermal synthesis of branched α-MnO ₂ nanorods for supercapacitor application. CrystEngComm, 2015, 17, 5970-5977.	1.3	40
23	Oxygen Defect Engineering of βâ€MnO ₂ Catalysts via Phase Transformation for Selective Catalytic Reduction of NO. Small, 2021, 17, e2102408.	5.2	38
24	Catalytic combustion of dimethyl ether over α-MnO 2 nanostructures with different morphologies. Applied Surface Science, 2017, 409, 223-231.	3.1	36
25	Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery. Materials Today Energy, 2022, 24, 100934.	2.5	35
26	Crystallization design of MnO ₂ via acid towards better oxygen reduction activity. CrystEngComm, 2016, 18, 6895-6902.	1.3	32
27	One-pot hydrothermal synthesis of novel 3D starfish-like Î'-MnO ₂ nanosheets on carbon fiber paper for high-performance supercapacitors. RSC Advances, 2017, 7, 14910-14916.	1.7	32
28	MOF-derived metal oxide composite Mn ₂ Co ₁ O _x /CN for efficient formaldehyde oxidation at low temperature. Catalysis Science and Technology, 2019, 9, 5845-5854.	2.1	32
29	Influence of preparation temperature and acid treatment on the catalytic activity of MnO2. Journal of Solid State Chemistry, 2019, 272, 173-181.	1.4	24
30	Homologous NiCoP@NiFeP heterojunction array achieving high-current hydrogen evolution for alkaline anion exchange membrane electrolyzers. Journal of Materials Chemistry A, 2022, 10, 10209-10218.	5.2	24
31	Real-Time Monitoring of Self-Aggregation of β-Amyloid by a Fluorescent Probe Based on Ruthenium Complex. Analytical Chemistry, 2020, 92, 2953-2960.	3.2	21
32	Ultra-long α-MnO2 nanowires: Control synthesis and its absorption activity. Materials Letters, 2014, 121, 234-237.	1.3	18
33	Promotion Effect of Chromium on the Activity and SO ₂ Resistance of CeO ₂ –TiO ₂ Catalysts for the NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 11676-11688.	1.8	18
34	Surface phosphorization of Ni–Co–S as an efficient bifunctional electrocatalyst for full water splitting. Dalton Transactions, 2021, 50, 16578-16586.	1.6	17
35	Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides. Chemical Engineering Journal, 2022, 430, 132699.	6.6	16
36	Nano Fe3-Cu O4 as the heterogeneous catalyst in an advanced oxidation process for excellent peroxymonosulfate activation toward climbazole degradation. Chemical Engineering Journal, 2022, 439, 135553.	6.6	11

Lin Yu

#	Article	IF	CITATIONS
37	Photocatalytic transformation of climbazole and 4-chlorophenol formation using a floral array of chromium-substituted magnetite nanoparticles activated with peroxymonosulfate. Environmental Science: Nano, 2019, 6, 2986-2999.	2.2	10
38	Interconnected NiCo ₂ O ₄ nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li–S batteries. Nanoscale Advances, 2021, 3, 1690-1698.	2.2	10
39	Controllable synthesis 3D hierarchical structured MnO2@NiCo2O4 and its morphology-dependent activity. Inorganic Chemistry Frontiers, 2018, 5, 319-326.	3.0	9
40	Thiol-Containing Metal–Organic Framework-Decorated Carbon Cloth as an Integrated Interlayer–Current Collector for Enhanced Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 31942-31950.	4.0	8
41	Porous washcoat structure in CeO ₂ modified Cu‧SZâ€13 monolith catalyst for NH ₃ ‧CR with improved catalytic performance. AICHE Journal, 2022, 68, .	1.8	7
42	Self-templated formation of hierarchical hollow β-MnO2 microspheres with enhanced oxygen reduction activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128228.	2.3	6
43	Selfâ€assembly Behavior of Metal Halide Perovskite Nanocrystals. Chinese Journal of Chemistry, 2022, 40, 2239-2248.	2.6	6
44	Hierarchical branched α-MnO ₂ : one-step synthesis and catalytic activity. RSC Advances, 2017, 7, 46529-46535.	1.7	5
45	Highly Ordered, Ultralong Mnâ€Based Nanowire Films with Low Contact Resistance as Freestanding Electrodes for Flexible Supercapacitors with Enhanced Performance. ChemElectroChem, 2017, 4, 3061-3067.	1.7	5
46	Shape-controlled synthesis of nickel–cobalt–sulfide with enhanced electrochemical activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 2251-2258.	1.1	5
47	Orthorhombic CoSe2 nanoparticles anchored in Ketjenblack as a bifunctional electrocatalyst for Znâ€air batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 14385-14397.	1.1	5
48	Effect of textual features and surface properties of activated carbon on the production of hydrogen peroxide from hydroxylamine oxidation. RSC Advances, 2017, 7, 25305-25313.	1.7	4
49	The synergistically enhanced activity and stability of layered manganese oxide <i>via</i> the engineering of defects and K ⁺ ions for oxygen electrocatalysis. CrystEngComm, 2022, 24, 2327-2335.	1.3	4
50	A composite material with CeO2-ZrO2 nanocrystallines embedded in SiO2 matrices and its enhanced thermal stability and oxygen storage capacity. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2
51	Advanced three-dimensional hierarchical porous $\hat{I}\pm$ -MnO2 nanowires network toward enhanced supercapacitive performance. Nanotechnology, 2022, , .	1.3	2
52	Enhanced Catalytic Hydrogen Peroxide Production from Hydroxylamine Oxidation on Modified Activated Carbon Fibers: The Role of Surface Chemistry. Catalysts, 2021, 11, 1515.	1.6	2