Zuleykha R Valiullina

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5682827/publications.pdf
Version: 2024-02-01

Adducts of dichloroketene with 1,3-cyclopentadienes in the synthesis of bioactive cyclopentanoids.
Russian Chemical Bulletin, 2021,70, 1-31. Russian Chemical Bulletin, 2021, 70, 1-31.
$\hat{1}^{2}$-Lactam Ring Opening in the Reformatsky Reaction of
2 (3R,4R)-4-Acetoxy-3-((1R)-1-\{[tert-butyl(dimethyl)silyl]oxy\}ethyl)azetidin-2-one with Ethyl
4-Bromo-3-oxopentanoate. Russian Journal of Organic Chemistry, 2021, 57, 1461-1465.
Reactions of 2,3-Dibromo-2-methylpropanamides Promoted by Potassium tert-Butoxide. Russian Journal
of Organic Chemistry, 2021, 57, 1643-1649.

Base-determinant chemodivergent transformations of chiral 2,3-dibromopropanamide derivative.
Mendeleev Communications, 2020, 30, 313-314.

Primary Amineâ€"Promoted Ring Opening in Carbapenem-derived p-Nitrobenzyl Esters. Russian Journal of
Organic Chemistry, 2020, 56, 287-291.
Regioselective Intermolecular Cyclization of Methyl
6
Chemistry, 2020, 56, 2043-2047.
7 Chiral 7-Oxabicyclo[2.2.1]heptane Building Blocks for Prostanoids. Russian Journal of Organic
$7 \quad$ Chemistry, 2019, 55, 1131-1135.

New Azetidinone Building Block for Carbapenems. Russian Journal of Organic Chemistry, 2019, 55,
377-380.

Synthesis and In Vitro Antibacterial Activity of New C-3-Modified Carbapenems. Russian Journal of
$9 \quad \begin{aligned} & \text { Synthesis and In Vitro Antibacterial Activity } \\ & \text { Bioorganic Chemistry, 2019, 45, 398-404. }\end{aligned}$

Low-Temperature Reactions of $\hat{I}_{ \pm}-$Bromopropanoyl Chloride with Lithium Derivative of Ethyl Acetate.
Russian Journal of Organic Chemistry, 2019, 55, 1726-1730.
0.3

Novel azetidinones for carbapenems and fragmentation in the allylamine precursor analogue.
Mendeleev Communications, 2018, 28, 131-132.

Methyl 2-(Bromomethyl)acrylate, Methyl Acrylate, and Clycine in the Synthesis of Functionalized
Pyrrolidones. Russian Journal of Organic Chemistry, 2018, 54, 1665-1669.
Synthesis of $\hat{1}^{2}$-Lactam and Anomalous Minor Products in the (i-Pr)2NEt-Promoted Reaction of
13 N-Chloroglycine Methyl Ester Derivative with Dichloroacetyl Chloride. Russian Journal of Organic
Chemistry, 2018, 54, 1559-1561.
(2R,3R)-3-[(1R)-1-\{[tert-Butyl(dimethyl)silyl]oxy\}ethyl]-4-oxoazetidin-2-yl Acetate in Zinc- and
Samarium-Promoted Substitution Reactions with Methyl 2-Bromopropanoate and Methyl
14 (2-Bromomethyl)prop-2-enoate. Unusual Cleavage of the Nlấ'C4 Bond in Azetidin-2-one Derivative with
0.3 Migration of Methoxycarbonyl Group in Synthetic Approaches to Carbapenems and Their Analogs.
Russian Journal of Organic Chemistry, 2018, 54, 1023-1030.
15 Unusual course of â€œenolate-imineâ€•condensation in approach to $\hat{\imath}$-lactams. Russian Journal of Organic
Chemistry, 2017, 53, 787-789.

Pyrrolidine synthons for 1 ̂-lactams. Russian Journal of Organic Chemistry, 2016, 52, 349-354.

Dual Re<sup>V<|sup>Catalysis in Oneâ€Pot Consecutive Meyerâ€"Schuster and Dielsâ€"Alder Reactions.
European Journal of Organic Chemistry, 2016, 2016, 4900-4906.
Functionalized 1 2-lactams based on (E)-1-(furan-2-yl)-N-[(4-methoxyphenyl)methyl]methanimine and its imineâ $€^{\prime \prime}$ imine rearrangement initiated by potassium hydride. Russian Journal of Organic Chemistry, 2016,
A short synthesis of the carbocyclic core of Entecavir from Corey lactone. Mendeleev
Communications, 2016, 26, 9-10.

Haloiminolactonization of cyclopentene $\hat{l} \pm, \hat{l} \pm$-dichlorocarboxamides. Tandem rearrangement of iminolactones in epoxylactones. Russian Journal of Organic Chemistry, 2015, 51, 1524-1531.

Vicinally substituted cyclopentenes and cyclopentenones from
($\hat{A} \pm$)-7,7-dichlorobicyclo[3.2.0]hept-2-en-6-one. Russian Journal of Organic Chemistry, 2015, 51, 319-324.
Tandem transformations of cyclopentene $\hat{l} \pm, \hat{I} \pm-$ dichlorocarboxamides into epoxy lactones induced by a
$22 \hat{1} 3$-hydroxyl group; a short synthesis of the Corey epoxy lactone and its enantiomer. Tetrahedron Letters, 2015, 56, 6904-6907.

23 Synthesis of vespertilin conjugates with OSW-1 disaccharide blocks. Russian Journal of Organic

Unexpected fragmentation of $16 \hat{1}^{2}$-acetoxy-22-oxocholestanes on the action of
methylenetriphenylphosphorane. Mendeleev Communications, 2014, 24, 272-273.
$0.6 \quad 1$

25 New disaccharide blocks for OSW-1 and its analogs. Russian Journal of Organic Chemistry, 2012, 48,
1238-1244.

Chiral furan-2-yl-substituted reagents based on (+)-Î士-methylbenzylamine. Russian Journal of Organic
Chemistry, 2012, 48, 439-441.

Chiral blocks for the synthesis of cyclopentanoids from [2+2]-cycloadduct of dichloroketene and
dimethylfulvene. Russian Journal of Organic Chemistry, 2012, 48, 442-450.

Reactions of 4,5-bis(morpholin-4-yl)cyclopent-2-en-1-one with sodium salts derived from methyl dichloroacetate and ethyl (dimethyl-̂̂»4-sulfanylidene)acetate. Russian Journal of Organic Chemistry,
0.3 2012, 48, 509-512.

29 Cyclopentenone blocks for 15-deoxy-1" 12,14 -prostaglandin J2. Russian Journal of Organic Chemistry,
2011, 47, 180-184.
Syntheses and oxidative transformations of
30 6-(1-methylethylidene)-3,3a,6,6a-tetrahydro-2H-cyclopenta[b]furan-2-one and its precursors. Russian
Journal of Organic Chemistry, 2011, 47, 185-192.

$$
31 \begin{aligned}
& \text { One-pot conversion of }(\hat{A} \pm)-7,7-d i c h l o r o-4-(1-m e t h y l e t h y l i d e n e)-b i c y c l o[3.2 .0] \text { hept-2-en-6-one into } \\
& \text { dechlorinated } \hat{1} 3-l a c t o n e . ~ R u s s i a n ~ J o u r n a l ~ o f ~ O r g a n i c ~ C h e m i s t r y, ~ 2010, ~ 46, ~ 605-606 . ~
\end{aligned}
$$

Reaction of ($\hat{A} \pm$)-7,7-dichloro-4-(1-methylethylidene)-bicyclo[3.2.0]hept-2-en-6-one with ozone. Russian Journal of Organic Chemistry, 2010, 46, 1013-1016.
0.3

0

33 10.1007/s11178-008-3004-5. , 2010, 44, 335.
0

Synthesis of diels-alder adduct of (4S,5S)-4,5-O-isopropylidene-2-cyclopenten-1-one with isoprene.
34 Vicinal substituted oxygenated cyclopentane blocks. Russian Journal of Organic Chemistry, 2009, 45,

1718-1720.

Unexpected transformation of $(\hat{\mathrm{A}} \pm)$-7,7-dichloro-4-(1-methylethylidene)bicyclo[3.2.0] hept-2-en-6-one in reaction with ozone. Russian Journal of Organic Chemistry, 2009, 45, 1725-1726.aqueous tetrahydrofurane. Russian Journal of Organic Chemistry, 2007, 43, 742-746.

Synthesis and structure ofJournal of Organic Chemistry, 2006, 42, 1435-1439.

Uncommon transformations of methyl

41 (1S,2S,3R,4R)-2,3-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate initiated by bases. Russian

Unexpected transformation of methyl

