Trista J Vick-Majors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5682781/publications.pdf

Version: 2024-02-01

33 papers

1,488 citations

20 h-index 31 g-index

34 all docs

34 docs citations

times ranked

34

1782 citing authors

#	Article	IF	CITATIONS
1	A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 2014, 512, 310-313.	27.8	255
2	Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME Journal, 2014, 8, 778-789.	9.8	181
3	Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology, 2010, 8, 140-154.	2.4	91
4	A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarctic Science, 2013, 25, 637-647.	0.9	74
5	Microbial Community Structure of Subglacial Lake Whillans, West Antarctica. Frontiers in Microbiology, 2016, 7, 1457.	3.5	74
6	Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiology Ecology, 2016, 92, .	2.7	73
7	Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nature Geoscience, 2017, 10, 582-586.	12.9	72
8	Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140290.	3.4	64
9	Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Frontiers in Microbiology, 2014, 5, 594.	3.5	62
10	Physiological Ecology of Microorganisms in Subglacial Lake Whillans. Frontiers in Microbiology, 2016, 7, 1705.	3. 5	47
11	Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology, 2016, 44, 347-350.	4.4	43
12	Biogeochemistry and microbial diversity in the marine cavity beneath the McMurdo Ice Shelf, Antarctica. Limnology and Oceanography, 2016, 61, 572-586.	3.1	37
13	Microbiology of Subglacial Environments. , 2017, , 83-110.		37
14	Bacterial responses to environmental change on the <scp>T</scp> ibetan <scp>P</scp> lateau over the past half century. Environmental Microbiology, 2016, 18, 1930-1941.	3.8	34
15	Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau. FEMS Microbiology Ecology, 2017, 93, .	2.7	34
16	Microbial Community Dynamics in Two Polar Extremes: The Lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula Marine Ecosystem. BioScience, 2016, 66, 829-847.	4.9	31
17	Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. Journal of Glaciology, 2019, 65, 29-38.	2.2	31
18	Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Subâ€Ice Marine Environment. Global Biogeochemical Cycles, 2020, 34, no.	4.9	29

#	Article	IF	CITATIONS
19	Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology, 2021, 62, 340-352.	1.4	29
20	Differential Incorporation of Bacteria, Organic Matter, and Inorganic Ions Into Lake Ice During Ice Formation. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 585-600.	3.0	26
21	Secondary Electrons as an Energy Source for Life. Astrobiology, 2018, 18, 73-85.	3.0	23
22	A comparison of pelagic, littoral, and riverine bacterial assemblages in Lake Bangongco, Tibetan Plateau. FEMS Microbiology Ecology, 2014, 89, 211-221.	2.7	22
23	Bacterioplankton productivity in lakes of the Taylor Valley, Antarctica, during the polar night transition. Aquatic Microbial Ecology, 2012, 68, 77-90.	1.8	20
24	Microbial dynamics and flagellate grazing during transition to winter in Lakes Hoare and Bonney, Antarctica. FEMS Microbiology Ecology, 2012, 82, 449-458.	2.7	18
25	Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica. Biological Bulletin, 2014, 227, 175-190.	1.8	15
26	Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Science, 2020, 32, 329-340.	0.9	13
27	Fate of glacier surface snowâ€originating bacteria in the glacierâ€fed hydrologic continuums. Environmental Microbiology, 2021, 23, 6450-6462.	3.8	12
28	A decade of shaping the futures of polar early career researchers: A legacy of the International Polar Year. Polar Record, 2018, 54, 312-323.	0.8	11
29	Inorganic carbon fixation in ice-covered lakes of the McMurdo Dry Valleys. Antarctic Science, 2019, 31, 123-132.	0.9	6
30	A FRAMEWORK FOR TRANSDISCIPLINARY RADIOCARBON RESEARCH: USE OF NATURAL-LEVEL AND ELEVATED-LEVEL 14C IN ANTARCTIC FIELD RESEARCH. Radiocarbon, 0, , 1-14.	1.8	3
31	Temporal variation of bacterial community and nutrients in Tibetan glacier snowpack. Cryosphere, 2022, 16, 1265-1280.	3.9	3
32	Metabolic and taxonomic diversity in antarctic subglacial environments., 2020,, 279-296.		2
33	Focus on the Future of Polar Research. Eos, 2016, 97, .	0.1	1