
## Xing-zhao Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5682758/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF  | CITATION |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 1  | Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc.<br>Thin Solid Films, 2009, 517, 4845-4849.                                     | 0.8 | 346      |
| 2  | Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surface and Coatings Technology, 2010, 205, 224-231.                        | 2.2 | 170      |
| 3  | Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surface and Coatings Technology, 2005, 200, 1372-1376.   | 2.2 | 130      |
| 4  | Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2008, 516, 5716-5720.                                                  | 0.8 | 130      |
| 5  | Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc. Thin Solid Films, 2011, 519, 1894-1900.                                         | 0.8 | 55       |
| 6  | Cr1â^'xAlxN coatings deposited by lateral rotating cathode arc for high speed machining applications.<br>Thin Solid Films, 2008, 516, 1710-1715.                                     | 0.8 | 47       |
| 7  | Structural and mechanical properties of Ti-containing diamond-like carbon films deposited by filtered cathodic vacuum arc. Thin Solid Films, 2002, 408, 183-187.                     | 0.8 | 32       |
| 8  | Abrasive wear resistance of Ti1â^'xAlxN hard coatings deposited by a vacuum arc system with lateral rotating cathodes. Surface and Coatings Technology, 2008, 203, 680-684.          | 2.2 | 31       |
| 9  | Ion beam assisted deposition of diamond-like nanocomposite films in an acetylene atmosphere. Thin<br>Solid Films, 1999, 346, 82-85.                                                  | 0.8 | 30       |
| 10 | Mechanical, tribological and corrosion properties of CrBN films deposited by combined direct current and radio frequency magnetron sputtering. Thin Solid Films, 2013, 544, 335-340. | 0.8 | 29       |
| 11 | Unbalanced magnetron sputtered Ti–Si–N:MoSx composite coatings for improvement of tribological properties. Surface and Coatings Technology, 2005, 198, 432-436.                      | 2.2 | 24       |
| 12 | Thermal conductivity of PVD TiAlN films using pulsed photothermal reflectance technique. Applied Physics A: Materials Science and Processing, 2010, 101, 573-577.                    | 1.1 | 23       |
| 13 | Catalytic chemical vapor deposition of vertically aligned carbon nanotubes on iron nanoislands<br>formed from Fe+-implanted SiO2 films. Carbon, 2004, 42, 3030-3033.                 | 5.4 | 13       |
| 14 | Cubic boron nitride films deposited by unbalanced RF magnetron sputtering and pulsed DC substrate bias. Thin Solid Films, 2003, 429, 22-27.                                          | 0.8 | 12       |
| 15 | Photocatalytic activity of tin-doped TiO2 film deposited via aerosol assisted chemical vapor deposition. Thin Solid Films, 2013, 544, 571-575.                                       | 0.8 | 11       |
| 16 | Aggregation and out diffusion of iron atoms for Fe ion implanted silica films. Journal of Applied<br>Physics, 1999, 86, 2550-2554.                                                   | 1.1 | 10       |
| 17 | Substrate geometry effect on the uniformity of amorphous carbon films deposited by unbalanced magnetron sputtering. Thin Solid Films, 2004, 461, 282-287.                            | 0.8 | 4        |