Marcio Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5682445/publications.pdf

Version: 2024-02-01

145 papers

3,026 citations

28 h-index 214527 47 g-index

145 all docs 145
docs citations

145 times ranked 1846 citing authors

#	Article	IF	CITATIONS
1	Low-flow limit in slot coating: Theory and experiments. AICHE Journal, 2000, 46, 1907-1917.	1.8	187
2	Flow of oil–water emulsions through a constricted capillary. International Journal of Multiphase Flow, 2009, 35, 507-515.	1.6	139
3	Pore Scale and Macroscopic Displacement Mechanisms in Emulsion Flooding. Transport in Porous Media, 2012, 94, 197-206.	1.2	113
4	Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. Journal of Non-Newtonian Fluid Mechanics, 2004, 118, 137-156.	1.0	110
5	Minimization of Viscous Fluid Fingering: A Variational Scheme for Optimal Flow Rates. Physical Review Letters, 2012, 109, 144502.	2.9	87
6	Stretching and slipping of liquid bridges near plates and cavities. Physics of Fluids, 2009, 21, .	1.6	83
7	Slot coating of mildly viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2006, 138, 63-75.	1.0	78
8	Capillary-driven mobility control in macro emulsion flow in porous media. International Journal of Multiphase Flow, 2012, 43, 62-65.	1.6	72
9	Deformable roll coating flows: steady state and linear perturbation analysis. Journal of Fluid Mechanics, 1997, 339, 143-172.	1.4	62
10	Polygonal finite elements for incompressible fluid flow. International Journal for Numerical Methods in Fluids, 2014, 74, 134-151.	0.9	61
11	Experiments and network model of flow of oil-water emulsion in porous media. Physical Review E, 2011, 84, 046305.	0.8	59
12	Stretching liquid bridges with moving contact lines: The role of inertia. Physics of Fluids, 2011, 23, .	1.6	59
13	Three-Dimensional Stability Analysis of Free Surface Flows: Application to Forward Deformable Roll Coating. Journal of Computational Physics, 1999, 151, 534-562.	1.9	50
14	Delaying the onset of dynamic wetting failure through meniscus confinement. Journal of Fluid Mechanics, 2012, 707, 496-520.	1.4	50
15	Forward roll coating flows of viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2005, 130, 96-109.	1.0	44
16	On the mechanism of wetting failure during fluid displacement along a moving substrate. Physics of Fluids, 2013, 25, .	1.6	44
17	The dynamics of three-dimensional liquid bridges with pinned and moving contact lines. Journal of Fluid Mechanics, 2012, 707, 521-540.	1.4	43
18	Oil recovery modeling of macro-emulsion flooding at low capillary number. Journal of Petroleum Science and Engineering, 2014, 119, 112-122.	2.1	43

#	Article	IF	CITATIONS
19	Immiscible Liquid-Liquid Displacement in Capillary Tubes. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127, 24-31.	0.8	40
20	Characteristics of air entrainment during dynamic wetting failure along a planar substrate. Journal of Fluid Mechanics, 2014, 747, 119-140.	1.4	40
21	Fluid flow topology optimization in PolyTop: stability and computational implementation. Structural and Multidisciplinary Optimization, 2016, 54, 1345-1364.	1.7	39
22	Alterations in PTEN, MDM2, TP53 and AR protein and gene expression are associated with canine prostate carcinogenesis. Research in Veterinary Science, 2016, 106, 56-61.	0.9	39
23	Response of slot coating flows to periodic disturbances. Chemical Engineering Science, 2008, 63, 2161-2173.	1.9	36
24	Snapâ€off of a liquid drop immersed in another liquid flowing through a constricted capillary. AICHE Journal, 2009, 55, 1993-1999.	1.8	34
25	Flows in Forward Deformable Roll Coating Gaps: Comparison between Spring and Plane-Strain Models of Roll Cover. Journal of Computational Physics, 1997, 138, 449-479.	1.9	33
26	Flow of Tunable Elastic Microcapsules through Constrictions. Scientific Reports, 2017, 7, 11898.	1.6	31
27	Mid-gap invasion in two-layer slot coating. Journal of Fluid Mechanics, 2009, 631, 397-417.	1.4	30
28	Stretching liquid bridges with moving contact lines: comparison of liquid-transfer predictions and experiments. Soft Matter, 2016, 12, 7457-7469.	1.2	29
29	Singleâ€point correction for parallel disks rheometry. Journal of Rheology, 1994, 38, 1925-1936.	1.3	28
30	Instability of Inelastic Shear-Thinning Liquids in a Couette Flow Between Concentric Cylinders. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 385-390.	0.8	28
31	Stability of viscoelastic liquid curtain. Chemical Engineering and Processing: Process Intensification, 2011, 50, 445-449.	1.8	28
32	Effect of curvature of coating die edges on the pinning of contact line. AICHE Journal, 2006, 52, 447-455.	1.8	27
33	Tracking birth of vortex in flows. Journal of Computational Physics, 2009, 228, 4549-4567.	1.9	27
34	Flow in tensioned-web-over-slot die coating: Effect of die lip design. Chemical Engineering Science, 2010, 65, 3957-3971.	1.9	27
35	Effect of Surface Wettability on Immiscible Displacement in a Microfluidic Porous Media. Energies, 2019, 12, 664.	1.6	27
36	Microfluidic production of aqueous suspensions of gellan-based microcapsules containing hydrophobic compounds. Chemical Engineering Science, 2020, 211, 115314.	1.9	27

#	Article	IF	CITATIONS
37	On the pressure-driven flow of suspensions: Particle migration in shear sensitive liquids. Journal of Non-Newtonian Fluid Mechanics, 2016, 234, 178-187.	1.0	26
38	A Coupled Transient Wellbore/Reservoir-Temperature Analytical Model. SPE Journal, 2019, 24, 2335-2361.	1.7	26
39	Flow of a drop through a constricted microcapillary. Computers and Fluids, 2013, 87, 50-56.	1.3	23
40	Dynamic wetting failure in surfactant solutions. Journal of Fluid Mechanics, 2016, 789, 285-309.	1.4	23
41	Comprehensive Genomic Profiling of Androgen-Receptor-Negative Canine Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 1555.	1.8	23
42	Dynamic wetting failure and hydrodynamic assist in curtain coating. Journal of Fluid Mechanics, 2016, 808, 290-315.	1.4	22
43	Numerical and experimental evaluation of droplet breakage of O/W emulsions in rotor-stator mixers. Chemical Engineering Science, 2019, 204, 270-286.	1.9	22
44	Conceptual Darcy-Scale Model of Oil Displacement with Macroemulsion. Energy & Energy	2.5	21
45	Injection of Dilute Oil-in-Water Emulsion as an Enhanced Oil Recovery Method for Heavy Oil: 1D and 3D Flow Configurations. Transport in Porous Media, 2016, 113, 267-281.	1.2	21
46	Particle migration and alignment in slot coating flows of elongated particle suspensions. AICHE Journal, 2017, 63, 3187-3198.	1.8	21
47	Effect of thickness and viscoelastic properties of roll cover on deformable roll coating flows. Chemical Engineering Science, 2003, 58, 4323-4333.	1.9	20
48	Effect of viscoelasticity on stability of liquid curtain. Journal of Non-Newtonian Fluid Mechanics, 2018, 257, 83-94.	1.0	20
49	Deregulation of E-cadherin, \hat{l}^2 -catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes. Research in Veterinary Science, 2018, 118, 254-261.	0.9	20
50	Liquid transfer from single cavities to rotating rolls. Journal of Fluid Mechanics, 2014, 747, 545-571.	1.4	19
51	Snap-off in constricted capillary with elastic interface. Physics of Fluids, 2016, 28, .	1.6	18
52	Pore Scale Visualization of Drainage in 3D Porous Media by Confocal Microscopy. Scientific Reports, 2019, 9, 12333.	1.6	18
53	Leveling of thin films of colloidal suspensions. Journal of Colloid and Interface Science, 2010, 343, 306-313.	5.0	17
54	p-mTOR, p-4EBP-1 and eIF4E expression in canine prostatic carcinoma. Research in Veterinary Science, 2019, 122, 86-92.	0.9	17

#	Article	IF	CITATIONS
55	Effect of interfacial rheology on drop coalescence in water–oil emulsion. Soft Matter, 2022, 18, 1423-1434.	1.2	17
56	Gas-displacement of non-Newtonian liquids in capillary tubes. International Journal of Heat and Fluid Flow, 2006, 27, 95-104.	1.1	16
57	Slot coating flows of nonâ€colloidal particle suspensions. AICHE Journal, 2017, 63, 1122-1131.	1.8	16
58	Effect of viscosity on liquid curtain stability. AICHE Journal, 2018, 64, 1448-1457.	1.8	16
59	Three-Dimensional Flow of a Newtonian Liquid Through an Annular Space with Axially Varying Eccentricity. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 223-231.	0.8	15
60	Histological, morphometric, protein and gene expression analyses of rat retinas with ischaemia–reperfusion injury model treated with sildenafil citrate. International Journal of Experimental Pathology, 2017, 98, 147-157.	0.6	14
61	Slot coating flow of particle suspensions: Particle migration in shear sensitive liquids. Journal of Non-Newtonian Fluid Mechanics, 2018, 258, 22-31.	1.0	14
62	Dynamic wetting failure in curtain coating: Comparison of model predictions and experimental observations. Chemical Engineering Science, 2019, 195, 74-82.	1.9	14
63	Two-layer tensioned-web-over-slot die coating: Effect of operating conditions on coating window. Chemical Engineering Science, 2010, 65, 4065-4079.	1.9	13
64	Flow visualization and operating limits of tensioned-web-over slot die coating process. Chemical Engineering and Processing: Process Intensification, 2011, 50, 471-477.	1.8	13
65	Dynamic Network Model of Mobility Control in Emulsion Flow Through Porous Media. Transport in Porous Media, 2013, 98, 427-441.	1.2	13
66	Optimization of slot-coating processes: minimizing the amplitude of film-thickness oscillation. Journal of Engineering Mathematics, 2011, 71, 97-108.	0.6	12
67	Stabilization of vortex beams in Kerr media by nonlinear absorption. Physical Review A, 2016, 94, .	1.0	12
68	Mechanisms of dynamic wetting failure in the presence of soluble surfactants. Journal of Fluid Mechanics, 2017, 825, 677-703.	1.4	12
69	Mechanics of Pickering Drops Probed by Electric Field–Induced Stress. Materials, 2017, 10, 436.	1.3	12
70	Enhancement of oil recovery by emulsion injection: A pore scale analysis from X-ray micro-tomography measurements. Journal of Petroleum Science and Engineering, 2021, 198, 108134.	2.1	12
71	Liquid-film coating on topographically patterned rotating cylinders. Physical Review Fluids, 2017, 2, .	1.0	12
72	Elastohydrodynamics of tensioned web roll coating process. International Journal for Numerical Methods in Fluids, 2003, 41, 561-576.	0.9	11

#	Article	IF	Citations
73	A Comprehensive Theoretical and Experimental Study on Fluid Displacement for Oilwell-Cementing Operations. SPE Drilling and Completion, 2012, 27, 596-603.	0.9	11
74	Transition from glass- to gel-like states in clay at a liquid interface. Scientific Reports, 2016, 6, 37239.	1.6	11
75	Effect of rheological properties of shear thinning liquids on curtain stability. Journal of Non-Newtonian Fluid Mechanics, 2019, 263, 69-76.	1.0	11
76	Effect of viscoelasticity on liquid sheet rupture. Journal of Non-Newtonian Fluid Mechanics, 2019, 264, 107-116.	1.0	11
77	Thermal impacts on pressure transient tests using a coupled wellbore/reservoir analytical model. Journal of Petroleum Science and Engineering, 2020, 191, 106992.	2.1	11
78	Dynamic wetting failure in shear-thinning and shear-thickening liquids. Journal of Fluid Mechanics, 2020, 892, .	1.4	11
79	Models for the mechanical characterization of core-shell microcapsules under uniaxial deformation. Food Hydrocolloids, 2021, 119, 106762.	5.6	11
80	Effect of contamination from direct sonication on characterization of nanofluid stability. Powder Technology, 2022, 399, 117157.	2.1	11
81	MULTIPLE STATES OF A VISCOUS FREE SURFACE FLOW: TRANSITION FROM PRE-METERED TO A METERING INFLOW. International Journal for Numerical Methods in Fluids, 1997, 24, 813-831.	0.9	10
82	Transient response of twoâ€layer slot coating flows to periodic disturbances. AICHE Journal, 2015, 61, 1699-1707.	1.8	10
83	Simultaneous multilayer coating of water-based and alcohol-based solutions. Journal of Coatings Technology Research, 2015, 12, 819-826.	1.2	10
84	Three dimensional flow of liquid transfer between a cavity and a moving roll. Chemical Engineering Science, 2016, 149, 169-180.	1.9	10
85	Particle migration in planar die-swell flows. Journal of Fluid Mechanics, 2017, 825, 49-68.	1.4	10
86	Effects of shear and extensional rheology on liquid transfer between two flat surfaces. Journal of Non-Newtonian Fluid Mechanics, 2019, 274, 104173.	1.0	10
87	A computational study of the effect of particle migration on the low-flow limit in slot coating of particle suspensions. Journal of Coatings Technology Research, 2019, 16, 1619-1628.	1.2	10
88	Delaying breakup and avoiding air entrainment in curtain coating using a two-layer liquid structure. Chemical Engineering Science, 2020, 213, 115376.	1.9	10
89	Contact line dynamics in curtain coating of non-Newtonian liquids. Physics of Fluids, 2021, 33, .	1.6	10
90	Displacement flows of dilute polymer solutions in capillaries. Journal of Non-Newtonian Fluid Mechanics, 2007, 147, 117-128.	1.0	9

#	Article	IF	Citations
91	Stretching Liquid Bridges with Bubbles: The Effect of Air Bubbles on Liquid Transfer. Langmuir, 2011, 27, 1556-1559.	1.6	9
92	Controlled microfluidic emulsification of oil in a clay nanofluid: Role of salt for Pickering stabilization. European Physical Journal: Special Topics, 2016, 225, 757-765.	1.2	9
93	Migration and alignment in the flow of elongated particle suspensions through a converging-diverging channel. Journal of Non-Newtonian Fluid Mechanics, 2017, 243, 56-63.	1.0	9
94	Trailing edge formation during slot coating of rectangular patches. Journal of Coatings Technology Research, 2017, 14, 1003-1013.	1.2	9
95	Water-alternating-macroemulsion reservoir simulation through capillary number-dependent modeling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 4135-4145.	0.8	9
96	Sedimentation and Marangoni stress in slot coating flow of particle suspension. Journal of Non-Newtonian Fluid Mechanics, 2017, 247, 53-61.	1.0	9
97	Transfer of rate-thinning and rate-thickening liquids between separating plates and cavities. Journal of Non-Newtonian Fluid Mechanics, 2018, 255, 57-69.	1.0	9
98	Microfluidic approach to produce emulsion-filled alginate microgels. Journal of Food Engineering, 2022, 315, 110812.	2.7	9
99	Heat Transfer in the Non-Newtonian Axisymmetric Flow in the Neighborhood of a Sudden Contraction. Journal of Heat Transfer, 1992, 114, 582-588.	1.2	8
100	Filtering the eigenvalues at infinite from the linear stability analysis of incompressible flows. Journal of Computational Physics, 2007, 227, 229-243.	1.9	8
101	Linear stability analysis of two″ayer rectilinear flow in slot coating. AICHE Journal, 2010, 56, 2503-2512.	1.8	8
102	A Quantum Relativistic Prisoner's Dilemma Cellular Automaton. International Journal of Theoretical Physics, 2016, 55, 4310-4323.	0.5	8
103	Pore network model for retrograde gas flow in porous media. Journal of Petroleum Science and Engineering, 2020, 185, 106635.	2.1	8
104	Pore-scale compositional modeling of gas-condensate flow: Effects of interfacial tension and flow velocity on relative permeability. Journal of Petroleum Science and Engineering, 2021, 202, 108454.	2.1	8
105	Drying of Thin Films of Polymer Solutions Coated over Impermeable Substrates. Heat Transfer Engineering, 2007, 28, 559-566.	1.2	7
106	Emptying of gravure cavities containing shear-thinning and shear-thickening liquids. Journal of Non-Newtonian Fluid Mechanics, 2019, 268, 46-55.	1.0	7
107	Deformation and rupture of microcapsules flowing through constricted capillary. Scientific Reports, 2021, 11, 7707.	1.6	7
108	Flow of Oil-Water Emulsion Through Constricted Capillary Tubes. AIP Conference Proceedings, 2008, ,	0.3	6

#	Article	IF	CITATIONS
109	Effects of repeated extracorporeal shock wave in urinary biochemical markers of rats. Acta Cirurgica Brasileira, 2009, 24, 496-501.	0.3	6
110	Viscocapillary model of slide coating: Effect of operating parameters and range of validity. AICHE Journal, 2009, 55, 2491-2505.	1.8	6
111	Efficient computation of the spectrum of viscoelastic flows. Journal of Computational Physics, 2009, 228, 1172-1187.	1.9	6
112	Flows with suspended and floating particles. Journal of Computational Physics, 2011, 230, 7736-7754.	1.9	6
113	Defining Metabolic Rewiring in Lung Squamous Cell Carcinoma. Metabolites, 2019, 9, 47.	1.3	6
114	Transcriptome of Two Canine Prostate Cancer Cells Treated With Toceranib Phosphate Reveals Distinct Antitumor Profiles Associated With the PDGFR Pathway. Frontiers in Veterinary Science, 2020, 7, 561212.	0.9	6
115	Capillary and Viscoelastic Effects on Elastohydrodynamic Lubrication in Roller Nips. Journal of Tribology, 1996, 118, 872-879.	1.0	5
116	Flow of Complex Fluids Through Porous Media: Application in Oil Recovery. , 2015, , .		5
117	Formation and stability of oil-in-water emulsions based on components of bioprocesses: A microfluidic analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126994.	2.3	5
118	Viscous free-surface flows on rotating elliptical cylinders. Physical Review Fluids, 2017, 2, .	1.0	5
119	Cavity filling with shear-thinning liquids. Physical Review Fluids, 2020, 5, .	1.0	5
120	Elastohydrodynamics of a moving substrate over a curved plate. AICHE Journal, 2002, 48, 739-751.	1.8	4
121	Measuring the velocity field in film-splitting flows of Newtonian liquids. AICHE Journal, 2007, 53, 281-289.	1.8	4
122	Operability limits of slide coating. Chemical Engineering Science, 2011, 66, 5077-5083.	1.9	4
123	Stationary and stable light-beam propagation in Kerr media with nonlinear absorption with controllable dissipation patterns. Physical Review A, 2017, 95, .	1.0	4
124	Pore-Scale Analysis of Condensate Blockage Mitigation by Wettability Alteration. Energies, 2020, 13, 4673.	1.6	4
125	Dynamics of viscoelastic flow through axisymmetric constricted microcapillary at high elasticity number. Journal of Non-Newtonian Fluid Mechanics, 2020, 286, 104438.	1.0	4
126	Spreading and merging of liquid streams flowing down an inclined plane: Modeling and experiments. Chemical Engineering Science, 2013, 95, 221-231.	1.9	3

#	Article	IF	CITATIONS
127	Analytical Models for Interpretation and Analysis of Transient Sandface and Wellbore Temperature Data., 2019,,.		3
128	Effects of aging on the shelf life and viscoelasticity of gellan gum microcapsules. Food Hydrocolloids, 2021, 121, 106982.	5.6	3
129	Electrostatic assist of liquid transfer between plates and cavities. Physical Review Fluids, 2019, 4, .	1.0	3
130	Effect of viscoelasticity on oil displacement in a microfluidic porous medium. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	3
131	Two-layer tensioned-web-over-slot die coating: Effect of die lip geometry. Chemical Engineering Science, 2010, 65, 4014-4026.	1.9	2
132	Shear-induced particle migration in the flow of particle suspensions through a sudden plane expansion. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	2
133	Mobility Reduction in the Flow of an Elastic Microcapsule through a Constricted Channel. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 2278-2289.	1.8	2
134	Microcapsules with controlled magnetic response. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	2
135	Computational study of planar extrudate swell flows with a viscous liquidâ€gas interface. AICHE Journal, 2022, 68, e17503.	1.8	2
136	Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2022, , .	0.7	2
137	Process limits in two-layer reverse roll transfer. Journal of Coatings Technology Research, 2013, 10, 485-492.	1.2	1
138	Efficient method to compute full eigenspectrum of incompressible viscous flows: Application on two-layer rectinear flow. Korea Australia Rheology Journal, 2015, 27, 177-188.	0.7	1
139	Embedding of polytopes for topology optimization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	1
140	Petroleum reservoir parameters estimation using non-isothermal transient model and optimization methods. Journal of Petroleum Science and Engineering, 2022, 212, 110269.	2.1	1
141	Thin-film flows on rotating noncircular cylinders with large curvature variations. Physical Review Fluids, 2022, 7, .	1.0	1
142	Finite Element/Fictitious Domain programming for flows with particles made simple. Advances in Engineering Software, 2014, 70, 51-62.	1.8	0
143	STABILIZATION OF EMULSIONS BY HETEROCOAGULATION OF CLAY MINERALS USING A MICROFLUIDIC DEVICE. , 0, , .		0
144	The value of Berlin questionnaire to identify patients at risk for the sleep apnea syndrome in the periodical medical examinations in companies. , 2015 , , .		0

#	Article	IF	CITATIONS
145	Nonlinear Vortex Light Beams Supported and Stabilized by Dissipation. Understanding Complex Systems, 2018, , 111-138.	0.3	0