Hisato Iwata

List of Publications by Citations

Source: https://exaly.com/author-pdf/5682143/hisato-iwata-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 194
papers
 6,678
citations
 42
h-index
 75
g-index

 201
ext. papers
 7,186
ext. citations
 6.2
avg, IF
 5.29
L-index

#	Paper	IF	Citations
194	Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. <i>Environmental Science & Environmental Science & Environm</i>	10.3	790
193	Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. <i>Science of the Total Environment</i> , 1994 , 154, 163-77	10.2	383
192	Geographical distribution of persistent organochlorines in air, water and sediments from Asia and Oceania, and their implications for global redistribution from lower latitudes. <i>Environmental Pollution</i> , 1994 , 85, 15-33	9.3	372
191	Persistent organochlorine residues in air, water, sediments, and soils from the lake baikal region, Russia. <i>Environmental Science & Environmental Sci</i>	10.3	217
190	Butyltins in muscle and liver of fish collected from certain Asian and Oceanian countries. <i>Environmental Pollution</i> , 1995 , 90, 279-90	9.3	181
189	Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi, Vietnam. <i>Environmental Pollution</i> , 2006 , 139, 95-106	9.3	152
188	Persistent organochlorine residues in human breast milk from Hanoi and Hochiminh City, Vietnam: contamination, accumulation kinetics and risk assessment for infants. <i>Environmental Pollution</i> , 2004 , 129, 431-41	9.3	144
187	Butyltin Contamination in Marine Mammals from North Pacific and Asian Coastal Waters. <i>Environmental Science & Environmental S</i>	10.3	129
186	Exposure assessment for trace elements from consumption of marine fish in Southeast Asia. <i>Environmental Pollution</i> , 2007 , 145, 766-77	9.3	120
185	Concentrations of trace elements in marine fish and its risk assessment in Malaysia. <i>Marine Pollution Bulletin</i> , 2005 , 51, 896-911	6.7	111
184	High accumulation of toxic butyltins in marine mammals from Japanese coastal waters. <i>Environmental Science & Environmental Sc</i>	10.3	101
183	Specific accumulation of organochlorines in human breast milk from Indonesia: levels, distribution, accumulation kinetics and infant health risk. <i>Environmental Pollution</i> , 2006 , 139, 107-17	9.3	96
182	Mercury contamination in human hair and fish from Cambodia: levels, specific accumulation and risk assessment. <i>Environmental Pollution</i> , 2005 , 134, 79-86	9.3	91
181	Contamination by persistent organic pollutants in dumping sites of Asian developing countries: implication of emerging pollution sources. <i>Archives of Environmental Contamination and Toxicology</i> , 2006 , 50, 474-81	3.2	85
180	Persistent organochlorine residues in sediments from the Chukchi Sea, Bering Sea and Gulf of Alaska. <i>Marine Pollution Bulletin</i> , 1994 , 28, 746-753	6.7	79
179	Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. <i>International Journal of Molecular Sciences</i> , 2011 , 12, 2351-82	6.3	77
178	Pollution sources and occurrences of selected persistent organic pollutants (POPs) in sediments of the Mekong River delta, South Vietnam. <i>Chemosphere</i> , 2007 , 67, 1794-801	8.4	77

(1996-2006)

177	noxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (ICDD) in developing red seabream (Pagrus major) embryo: an association of morphological deformities with AHR1, AHR2 and CYP1A expressions. <i>Aquatic Toxicology</i> , 2006 , 80, 166-79	5.1	74
176	Detection of butyltin compound residues in the blubber of marine mammals. <i>Marine Pollution Bulletin</i> , 1994 , 28, 607-612	6.7	68
175	Toxicokinetics of PCDD, PCDF, and coplanar PCB congeners in Baikal seals, Pusa sibirica: age-related accumulation, maternal transfer, and hepatic sequestration. <i>Environmental Science & Environmental Science</i>	10.3	66
174	Contamination of butyltin compounds in Malaysian marine environments. <i>Environmental Pollution</i> , 2004 , 130, 347-58	9.3	66
173	Fate of the insecticide HCH in the tropical coastal area of South India. <i>Marine Pollution Bulletin</i> , 1991 , 22, 290-297	6.7	66
172	Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms (AhR1 and AhR2) from avian species. <i>Toxicological Sciences</i> , 2007 , 99, 101-17	4.4	63
171	Contamination and effects of perfluorochemicals in Baikal seal (Pusa sibirica). 1. Residue level, tissue distribution, and temporal trend. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	61
170	Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam. <i>Toxicology and Applied Pharmacology</i> , 2010 , 242, 352-62	4.6	60
169	Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: monitoring at Mekong Delta area and in vitro experiment. <i>Aquatic Toxicology</i> , 2007 , 83, 43-51	5.1	59
168	Seasonal variation of persistent organochlorine insecticide residues in Vellar River waters in Tamil Nadu, South India. <i>Environmental Pollution</i> , 1990 , 67, 289-304	9.3	59
167	Organochlorine pesticides and polychlorinated biphenyl congeners in wild terrestrial mammals and birds from Chubu region, Japan: interspecies comparison of the residue levels and compositions. <i>Chemosphere</i> , 1998 , 36, 3211-21	8.4	58
166	Toxicogenomic analysis of immune system-related genes in Japanese flounder (Paralichthys olivaceus) exposed to heavy oil. <i>Marine Pollution Bulletin</i> , 2008 , 57, 445-52	6.7	58
165	Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam. <i>Toxicology and Applied Pharmacology</i> , 2009 , 236, 131-41	4.6	53
164	Persistent organic pollutants in sediments from Sai Gon-Dong Nai River basin, Vietnam: levels and temporal trends. <i>Archives of Environmental Contamination and Toxicology</i> , 2007 , 52, 458-65	3.2	53
163	Relationship of urinary arsenic metabolites to intake estimates in residents of the Red River Delta, Vietnam. <i>Environmental Pollution</i> , 2009 , 157, 396-403	9.3	50
162	Contamination by polybrominated diphenyl ethers and persistent organochlorines in catfish and feed from Mekong River Delta, Vietnam. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2700-8	3.8	50
161	Concentrations of heavy metals, organochlorines, and organotins in horseshoe crab, Tachypleus tridentatus, from Japanese coastal waters. <i>Archives of Environmental Contamination and Toxicology</i> , 1995 , 28, 40-47	3.2	50
160	Specific accumulation and distribution of butyltin compounds in various organs and tissues of the Steller sea lion (Eumetopias jubatus): Comparison with organochlorine accumulation pattern. Marine Pollution Bulletin, 1996, 32, 558-563	6.7	49

159	A new view on the divergence of HCH isomer compositions in oceanic air. <i>Marine Pollution Bulletin</i> , 1993 , 26, 302-305	6.7	49
158	Levels and toxicokinetic behaviors of PCDD, PCDF, and coplanar PCB congeners in common cormorants from Lake Biwa, Japan. <i>Environmental Science & Environmental Science & Envi</i>	10.3	47
157	Dioxin activation of CYP1A5 promoter/enhancer regions from two avian species, common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus): association with aryl hydrocarbon receptor 1 and 2 isoforms. <i>Toxicology and Applied Pharmacology</i> , 2009 , 234, 1-13	4.6	45
156	Interelement relationships and age-related variation of trace element concentrations in liver of striped dolphins (Stenella coeruleoalba) from Japanese coastal waters. <i>Marine Pollution Bulletin</i> , 2008 , 57, 807-15	6.7	44
155	Enantiomeric ratios of Ehexachlorocyclohexane in blubber of small cetaceans. <i>Marine Pollution Bulletin</i> , 1996 , 32, 27-31	6.7	44
154	Distribution, biomagnification, and elimination of butyltin compound residues in common cormorants (Phalacrocorax carbo) from Lake Biwa, Japan. <i>Archives of Environmental Contamination and Toxicology</i> , 1996 , 31, 210-7	3.2	44
153	Dioxins and related compounds in human breast milk collected around open dumping sites in Asian developing countries: bovine milk as a potential source. <i>Archives of Environmental Contamination and Toxicology</i> , 2004 , 47, 414-26	3.2	43
152	Bioaccumulation of Butyltin Compounds in Marine Mammals: The Specific Tissue Distribution and Composition. <i>Applied Organometallic Chemistry</i> , 1997 , 11, 257-264	3.1	42
151	Cytochrome P450 1A4 and 1A5 in common cormorant (Phalacrocorax carbo): evolutionary relationships and functional implications associated with dioxin and related compounds. <i>Toxicological Sciences</i> , 2006 , 92, 394-408	4.4	41
150	Bioaccumulation of organochlorines in crows from an indian open waste dumping site: evidence for direct transfer of dioxin-like congeners from the contaminated soil. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 4421-30	10.3	41
149	Urinary 8-hydroxy-2'-deoxyguanosine in inhabitants chronically exposed to arsenic in groundwater in Cambodia. <i>Journal of Environmental Monitoring</i> , 2006 , 8, 293-9		41
148	Hepatic CYP1A induction by dioxin-like compounds, and congener-specific metabolism and sequestration in wild common cormorants from Lake Biwa, Japan. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 3611-9	10.3	40
147	Contamination and effects of perfluorochemicals in Baikal seal (Pusa sibirica). 2. Molecular characterization, expression level, and transcriptional activation of peroxisome proliferator-activated receptor alpha. <i>Environmental Science & Environmental Science & Environm</i>	10.3	39
146	Contamination by persistent organochlorines in cetaceans incidentally caught along Brazilian coastal waters. <i>Archives of Environmental Contamination and Toxicology</i> , 2004 , 46, 124-34	3.2	39
145	Identification of novel cytochrome P450 1A genes from five marine mammal species. <i>Aquatic Toxicology</i> , 2000 , 51, 145-53	5.1	39
144	Specific accumulation of persistent organochlorines in bluefin tuna collected from Japanese coastal waters. <i>Marine Pollution Bulletin</i> , 2002 , 45, 254-61	6.7	38
143	Mercury in hair and blood from residents of Phnom Penh (Cambodia) and possible effect on serum hormone levels. <i>Chemosphere</i> , 2007 , 68, 590-6	8.4	37
142	Molecular basis of the Dark Agouti rat drug oxidation polymorphism: importance of CYP2D1 and CYP2D2. <i>Pharmacogenetics and Genomics</i> , 1998 , 8, 73-82		35

(2011-2016)

141	Organohalogen Compounds in Pet Dog and Cat: Do Pets Biotransform Natural Brominated Products in Food to Harmful Hydroxlated Substances?. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	34
140	Accumulation features and temporal trends of PCDDs, PCDFs and PCBs in Baikal seals (Pusa sibirica). <i>Environmental Pollution</i> , 2009 , 157, 737-47	9.3	34
139	Organochlorine and butyltin residues in deep-sea organisms collected from the western North Pacific, off-Tohoku, Japan. <i>Marine Pollution Bulletin</i> , 2002 , 45, 348-61	6.7	33
138	Accumulation of persistent organochlorines in resident white-breasted waterhens (Amaurornis Phoenicurus) from Cambodia. <i>Marine Pollution Bulletin</i> , 2003 , 46, 1341-8	6.7	33
137	Induction of cytochrome P450 1A5 mRNA, protein and enzymatic activities by dioxin-like compounds, and congener-specific metabolism and sequestration in the liver of wild jungle crow (Corvus macrorhynchos) from Tokyo, Japan. <i>Toxicological Sciences</i> , 2005 , 88, 384-99	4.4	33
136	Analysis of thyroid hormones in serum of Baikal seals and humans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay methods: application of the LC-MS/MS method to wildlife tissues. <i>Environmental Science & Environmental </i>	10.3	32
135	Molecular characterization of cytochrome P450 1A1, 1A2, and 1B1, and effects of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners on their hepatic expression in Baikal seal (Pusa sibirica). <i>Toxicological Sciences</i> , 2007 , 97, 318-35	4.4	32
134	Identification of aryl hydrocarbon receptor 2 in aquatic birds; cDNA cloning of AHR1 and AHR2 and characteristics of their amino acid sequences. <i>Marine Environmental Research</i> , 2004 , 58, 113-8	3.3	32
133	Negative correlation between plasma thyroid hormone levels and chlorinated hydrocarbon levels accumulated in seals from the coast of Hokkaido, Japan. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1092-1097	3.8	32
132	Constitutive androstane receptor (CAR) as a potential sensing biomarker of persistent organic pollutants (POPs) in aquatic mammal: molecular characterization, expression level, and ligand profiling in Baikal seal (Pusa sibirica). <i>Toxicological Sciences</i> , 2006 , 94, 57-70	4.4	31
131	PCDDs, PCDFs, and coplanar PCBs in wild terrestrial mammals from Japan: congener specific accumulation and hepatic sequestration. <i>Environmental Pollution</i> , 2006 , 140, 525-35	9.3	30
130	Individual variations in arsenic metabolism in Vietnamese: the association with arsenic exposure and GSTP1 genetic polymorphism. <i>Metallomics</i> , 2012 , 4, 91-100	4.5	29
129	Exposure, metabolism, and health effects of arsenic in residents from arsenic-contaminated groundwater areas of Vietnam and Cambodia: a review. <i>Reviews on Environmental Health</i> , 2010 , 25, 193	- <u>3</u> 20	29
128	Potential effects of perfluorinated compounds in common cormorants from Lake Biwa, Japan: an implication from the hepatic gene expression profiles by microarray. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2378-86	3.8	27
127	Fate of HCH (BHC) in Tropical Paddy Field: Application Test in South India. <i>International Journal of Environmental Analytical Chemistry</i> , 1991 , 45, 45-53	1.8	27
126	Butyltin accumulation in the liver and kidney of seabirds. <i>Marine Environmental Research</i> , 1997 , 44, 191-	199	26
125	Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan. <i>Environmental Pollution</i> , 2008 , 153, 127-36	9.3	26
124	Cytochrome P450 CYP2 genes in the common cormorant: Evolutionary relationships with 130 diapsid CYP2 clan sequences and chemical effects on their expression. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> 2011 , 153, 280-9	3.2	25

123	Risk assessment of triclosan in the global environment using a probabilistic approach. <i>Ecotoxicology</i> and Environmental Safety, 2017 , 143, 111-119	7	24
122	Gene expression profiling in common cormorant liver with an oligo array: assessing the potential toxic effects of environmental contaminants. <i>Environmental Science & Environmental Science & Environ</i>	-8 ³ O.3	24
121	Potencies of red seabream AHR1- and AHR2-mediated transactivation by dioxins: implication of both AHRs in dioxin toxicity. <i>Environmental Science & Environmental Science & En</i>	10.3	23
120	Dioxin-like and perfluorinated compounds in pigs in an Indian open waste dumping site: toxicokinetics and effects on hepatic cytochrome P450 and blood plasma hormones. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1551-60	3.8	23
119	Molecular characterization of the aryl hydrocarbon receptors (AHR1 and AHR2) from red seabream (Pagrus major). <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2005 , 141, 177-87	3.2	23
118	. Environmental Toxicology and Chemistry, 1999 , 18, 448	3.8	23
117	Human blood monitoring program in Japan: contamination and bioaccumulation of persistent organochlorines in Japanese residents. <i>Archives of Environmental Contamination and Toxicology</i> , 2006 , 51, 296-313	3.2	21
116	Hepatic microsomal cytochrome P450S and chlorinated hydrocarbons in largha and ribbon seals from Hokkaido, Japan: Differential response of seal species to ah receptor agonist exposure. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 794-806	3.8	21
115	Enantioselective Accumulation of EHexachlorocyclohexane in Northern Fur Seals and Double-Crested Cormorants: Effects of Biological and Ecological Factors in the Higher Trophic Levels. <i>Environmental Science & Double & Double Science & Double & Double Science & Double & Double Science & Double &</i>	10.3	21
114	Toxicological assessment of polychlorinated biphenyls and their metabolites in the liver of Baikal seal (Pusa sibirica). <i>Environmental Science & Environmental Science & Envi</i>	10.3	20
113	In vitro transactivation potencies of black-footed albatross (Phoebastria nigripes) AHR1 and AHR2 by dioxins to predict CYP1A expression in the wild population. <i>Environmental Science & Eamp; Technology</i> , 2012 , 46, 525-33	10.3	19
112	Evaluation of relative potencies for in vitro transactivation of the baikal seal aryl hydrocarbon receptor by dioxin-like compounds. <i>Environmental Science & Environmental Sc</i>	10.3	19
111	Arsenic species and their accumulation features in green turtles (Chelonia mydas). <i>Marine Pollution Bulletin</i> , 2008 , 57, 782-9	6.7	19
110	In silico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-, ligand-, and species-specific activations. <i>Environmental Science & Environmental Science </i>	10.3	18
109	Molecular and functional characterization of a novel aryl hydrocarbon receptor isoform, AHR1[in the chicken (Gallus gallus). <i>Toxicological Sciences</i> , 2013 , 136, 450-66	4.4	18
108	Accumulation features of trace elements in mass-stranded harbor seals (Phoca vitulina) in the North Sea coast in 2002: the body distribution and association with growth and nutrition status. <i>Marine Pollution Bulletin</i> , 2011 , 62, 963-75	6.7	18
107	Accumulation of organotin compounds and marine birnavirus detection in Korean ascidians. <i>Fisheries Science</i> , 2007 , 73, 263-269	1.9	18
106	Organotin residues and the role of anthropogenic tin sources in the coastal marine environment of Indonesia. <i>Marine Pollution Bulletin</i> , 2005 , 50, 226-35	6.7	18

(2013-2009)

105	Effects of co-exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and perfluorooctane sulfonate or perfluorooctanoic acid on expression of cytochrome P450 isoforms in chicken (Gallus gallus) embryo hepatocyte cultures. Comparative Biochemistry and Physiology Part - C: Toxicology and	3.2	17
104	Congener-specific toxicokinetics of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls in black-eared kites (Milvus migrans): cytochrome P4501A-dependent hepatic sequestration. <i>Environmental Toxicology and Chemistry</i> ,	3.8	17
103	P450 in wild animals as a biomarker of environmental impact. <i>Biomarkers</i> , 2001 , 6, 19-25	2.6	17
102	Alterations in urinary metabolomic profiles due to lead exposure from a lead-acid battery recycling site. <i>Environmental Pollution</i> , 2018 , 242, 98-105	9.3	17
101	Effects of prenatal exposure to triclosan on the liver transcriptome in chicken embryos. <i>Toxicology and Applied Pharmacology</i> , 2018 , 347, 23-32	4.6	16
100	Blood levels of polychlorinated biphenyls and their hydroxylated metabolites in Baikal seals (Pusa sibirica): emphasis on interspecies comparison, gender difference and association with blood thyroid hormone levels. <i>Chemosphere</i> , 2014 , 114, 1-8	8.4	16
99	Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor (by perfluoroalkyl carboxylates and sulfonates: estimation of PFOA induction equivalency factors. <i>Environmental Science & Environmental Scien</i>	10.3	16
98	Accumulation of halogenated aromatic hydrocarbons and activities of cytochrome P450 and glutathione s-transferase in CRABS (Eriocheir japonicus) from Japanese Rivers. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 1490-1498	3.8	16
97	Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) expression in Baikal seal (Pusa sibirica) and association with 2,3,7,8-TCDD toxic equivalents and CYP1 expression levels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 141, 281-91	3.2	16
96	Toxicokinetics of dioxins and other organochlorine compounds in Japanese people: association with hepatic CYP1A2 expression levels. <i>Environment International</i> , 2013 , 53, 53-61	12.9	15
95	Genetic variation of FUT2 in a Vietnamese population: identification of two novel Se enzyme-inactivating mutations. <i>Transfusion</i> , 2012 , 52, 1268-75	2.9	14
94	Integrative assessment of potential effects of dioxins and related compounds in wild Baikal seals (Pusa sibirica): application of microarray and biochemical analyses. <i>Aquatic Toxicology</i> , 2011 , 105, 89-99	5.1	13
93	Polymorphic trial in oxidative damage of arsenic exposed Vietnamese. <i>Toxicology and Applied Pharmacology</i> , 2011 , 256, 174-8	4.6	13
92	Accumulation of trace elements in harp seals (Phoca groenlandica) from Pangnirtung in the Baffin Island, Canada. <i>Marine Pollution Bulletin</i> , 2011 , 63, 489-99	6.7	13
91	Transactivation potencies of Baikal seal constitutive active/androstane receptor by persistent organic pollutants and brominated flame retardants. <i>Environmental Science & Environmental Science & En</i>	10.3	13
90	Persistent organic pollutants in Vietnam: environmental contamination and human exposure. <i>Reviews of Environmental Contamination and Toxicology</i> , 2008 , 193, 213-90	3.5	13
89	Organohalogens and their hydroxylated metabolites in the blood of pigs from an open waste dumping site in south India: association with hepatic cytochrome P450. <i>Environmental Research</i> , 2015 , 138, 255-63	7.9	12
88	Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the peripheral nervous system of developing red seabream (Pagrus major). <i>Aquatic Toxicology</i> , 2013 , 128-129, 193-202	5.1	12

87	Polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated analogues in the blood of harbor, Dall's and finless porpoises from the Japanese coastal waters. <i>Marine Environmental Research</i> , 2017 , 128, 124-132	3.3	12
86	Alternative in vitro approach for assessing AHR-mediated CYP1A induction by dioxins in wild cormorant (Phalacrocorax carbo) population. <i>Environmental Science & Environmental Science & Environmental</i>	^{30.3}	12
85	Hepatic CYP1A induction by chlorinated dioxins and related compounds in the endangered black-footed albatross from the North Pacific. <i>Environmental Science & Environmental S</i>	65 ^{0.3}	12
84	Isozyme selective alterations of the expression of cytochrome P450 during regeneration of male rat liver following partial hepatectomy. <i>Xenobiotica</i> , 1997 , 27, 923-31	2	12
83	Molecular characterization of two metallothionein isoforms in avian species: evolutionary history, tissue distribution profile, and expression associated with metal accumulation. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2007 , 145, 295-305	3.2	12
82	Molecular characterization and tissue distribution of aryl hydrocarbon receptor nuclear translocator isoforms, ARNT1 and ARNT2, and identification of novel splice variants in common cormorant (Phalacrocorax carbo). Comparative Biochemistry and Physiology Part - C: Toxicology and	3.2	12
81	Species-specific responses of constitutively active receptor (CAR)-CYP2B coupling: lack of CYP2B inducer-responsive nuclear translocation of CAR in marine teleost, scup (Stenotomus chrysops). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 501-10	3.2	12
80	cDNA cloning of an aryl hydrocarbon receptor from Baikal seals (Phoca sibirica). <i>Marine Environmental Research</i> , 2002 , 54, 285-9	3.3	12
79	Preliminary survey of lead poisoning of Steller's sea eagle (Haliaeetus pelagicus) and white-tailed sea eagle (Haliaeetus albicilla) in Hokkaido, Japan. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 448-451	3.8	12
78	Effects of PCB exposure on serum thyroid hormone levels in dogs and cats. <i>Science of the Total Environment</i> , 2019 , 688, 1172-1183	10.2	11
77	Molecular and functional characterization of Aryl hydrocarbon receptor repressor from the chicken (Gallus gallus): interspecies similarities and differences. <i>Toxicological Sciences</i> , 2011 , 119, 319-34	4.4	11
76	In Vitro and In Silico Evaluations of Binding Affinities of Perfluoroalkyl Substances to Baikal Seal and Human Peroxisome Proliferator-Activated Receptor []Environmental Science & amp; Technology , 2019, 53, 2181-2188	10.3	11
75	Effects of prenatal bisphenol A exposure on the hepatic transcriptome and proteome in rat offspring. <i>Science of the Total Environment</i> , 2020 , 720, 137568	10.2	10
74	Sex differences in the accumulation of chlorinated dioxins in the cormorant (Phalacrocorax carbo): implication of hepatic sequestration in the maternal transfer. <i>Environmental Pollution</i> , 2013 , 178, 300-5	9.3	10
73	In situ RT-PCR detection of CYP1A mRNA in pharyngeal epithelium and chondroid cells from chemically untreated fish: involvement in vertebrate craniofacial skeletal development?. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 271, 130-7	3.4	10
7 ²	In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2016 , 187, 1-9	3.2	10
71	Accumulation of dioxins and induction of cytochrome P450 1A4/1A5 enzyme activities in common cormorants from Lake Biwa, Japan: temporal trends and validation of national regulation on dioxins emission. <i>Environmental Pollution</i> , 2012 , 168, 131-7	9.3	9
70	Human exposure to arsenic from groundwater in the Red River and Mekong River Deltas in Vietnam. <i>International Journal of Environmental Studies</i> , 2009 , 66, 49-57	1.8	9

(2009-2005)

69	Molecular cloning and mRNA expression of cytochrome P4501A1 and 1A2 in the liver of common minke whales (Balaenoptera acutorostrata). <i>Marine Pollution Bulletin</i> , 2005 , 51, 784-93	6.7	9
68	In vitro and in silico AHR assays for assessing the risk of heavy oil-derived polycyclic aromatic hydrocarbons in fish. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 181, 214-223	7	8
67	In Vitro and in Silico Analyses for Predicting Hepatic Cytochrome P450-Dependent Metabolic Potencies of Polychlorinated Biphenyls in the Baikal Seal. <i>Environmental Science & Environmental Science &</i>	10.3	8
66	Haptoglobin genotyping of Vietnamese: global distribution of HP del, complete deletion allele of the HP gene. <i>Legal Medicine</i> , 2015 , 17, 14-6	1.9	8
65	Identification of aryl hydrocarbon receptor signaling pathways altered in TCDD-treated red seabream embryos by transcriptome analysis. <i>Aquatic Toxicology</i> , 2016 , 177, 156-70	5.1	8
64	Identification and hepatic expression profiles of cytochrome P450 1-4 isozymes in common minke whales (Balaenoptera acutorostrata). <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , 2007 , 147, 667-81	2.3	8
63	Occurrence of tributyltin (TBT)-resistant bacteria is not related to TBT pollution in Mekong River and coastal sediment: with a hypothesis of selective pressure from suspended solid. <i>Chemosphere</i> , 2007 , 68, 1459-64	8.4	8
62	Ecological factors drive natural selection pressure of avian aryl hydrocarbon receptor 1 genotypes. <i>Scientific Reports</i> , 2016 , 6, 27526	4.9	8
61	In ovo exposure to triclosan alters the hepatic proteome in chicken embryos. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 165, 495-504	7	8
60	Targeted metabolome analysis of the dog brain exposed to PCBs suggests inhibition of oxidative phosphorylation by hydroxylated PCBs. <i>Toxicology and Applied Pharmacology</i> , 2019 , 377, 114620	4.6	7
59	Novel role of hnRNP-A2/B1 in modulating aryl hydrocarbon receptor ligand sensitivity. <i>Archives of Toxicology</i> , 2015 , 89, 2027-38	5.8	7
58	Molecular and functional characterization of aryl hydrocarbon receptor nuclear translocator 1 (ARNT1) and ARNT2 in chicken (Gallus gallus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011 , 153, 269-79	3.2	7
57	Chemical contamination in aquatic ecosystems. Yakugaku Zasshi, 2007, 127, 417-28	0	7
56	Accumulation patterns of polychlorinated biphenyl congeners and organochlorine pesticides in Steller's sea eagles and white-tailed sea eagles, threatened species, in Hokkaido, Japan. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 842-847	3.8	7
55	Thyroid lesions and dioxin accumulation in the livers of jungle crows (Corvus macrorhynchos) in urban and suburban Tokyo. <i>Archives of Environmental Contamination and Toxicology</i> , 2005 , 48, 424-32	3.2	7
54	Expression and characterization of dog CYP2D15 using baculovirus expression system. <i>Journal of Biochemistry</i> , 1998 , 123, 162-8	3.1	7
53	Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. <i>Archives of Insect Biochemistry and Physiology</i> , 2017 , 96, e21422	2.3	6
52	Alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase activities by in vitro-expressed cytochrome P450 1A4 and 1A5 from common cormorant (Phalacrocorax carbo). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 149, 544-51	3.2	6

51	Identification of constitutive androstane receptor cDNA in northern fur seal (Callorhinus ursinus). <i>Marine Environmental Research</i> , 2004 , 58, 107-11	3.3	6
50	Regio- and stereoselectivity in propranolol metabolism by dog liver microsomes and the expressed dog CYP2D15. <i>Journal of Biochemistry</i> , 1998 , 123, 747-51	3.1	6
49	Effects of 4-Hydroxy-2,3,3',4',5-Pentachlorobiphenyl (4-OH-CB107) on Liver Transcriptome in Rats: Implication in the Disruption of Circadian Rhythm and Fatty Acid Metabolism. <i>Toxicological Sciences</i> , 2018 , 165, 118-130	4.4	6
48	Enzymatic characterization of in vitro-expressed Baikal seal cytochrome P450 (CYP) 1A1, 1A2, and 1B1: implication of low metabolic potential of CYP1A2 uniquely evolved in aquatic mammals. <i>Aquatic Toxicology</i> , 2015 , 162, 138-151	5.1	5
47	8-Hydroxy-2?-deoxyguanosine and arsenic compounds in urine and serum of a 4-year-old child suffering from acute promyelocytic leukemia during treatment with arsenic trioxide. <i>Forensic Toxicology</i> , 2011 , 29, 65-68	2.6	5
46	8-Hydroxy-2?-deoxyguanosine (8-OHdG) as a possible marker of arsenic poisoning: a clinical case study on the relationship between concentrations of 8-OHdG and each arsenic compound in urine of an acute promyelocytic leukemia patient being treated with arsenic trioxide. <i>Forensic Toxicology</i> ,	2.6	5
45	Effects of in ovo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on hepatic AHR/ARNT-CYP1A signaling pathways in common cormorants (Phalacrocorax carbo). <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2010 , 152, 224-31	3.2	5
44	Catalytic function of avian cytochrome P450 1A4 and 1A5 (CYP1A4 and CYP1A5) enzymes heterologously expressed using in vitro yeast system. <i>Marine Environmental Research</i> , 2008 , 66, 154-5	3.3	5
43	Chapter 11 Persistent Organic Pollutants in Vietnam: Levels, Patterns, Trends, and Human Health Implications. <i>Developments in Environmental Science</i> , 2007 , 515-555		5
42	Inhibitory effects of endogenous dopaminergic neurotoxin, norsalsolinol on dopamine secretion in PC12 rat pheochromocytoma cells. <i>Neurochemistry International</i> , 2001 , 38, 567-72	4.4	5
41	Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major). <i>Archives of Toxicology</i> , 2017 , 91, 301-312	5.8	4
40	Effects of persistent organochlorine exposure on the liver transcriptome of the common minke whale (Balaenoptera acutorostrata) from the North Pacific. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 108, 95-105	7	4
39	Quantitative analysis of the interaction of constitutive androstane receptor with chemicals and steroid receptor coactivator 1 using surface plasmon resonance biosensor systems: a case study of the Baikal seal (Pusa sibirica) and the mouse. <i>Toxicological Sciences</i> , 2013 , 131, 116-27	4.4	4
38	Functional analysis of avian metallothionein isoforms: an ecotoxicological approach for assessing potential tolerability to element exposure. <i>Environmental Science & Environmental Science & Environ</i>	10.3	4
37	Searching for novel CYP members using cDNA library from a minke whale liver. <i>Marine Environmental Research</i> , 2004 , 58, 495-8	3.3	4
36	Tetracycline Resistance Gene Profiles in Red Seabream () Intestine and Rearing Water After Oxytetracycline Administration. <i>Frontiers in Microbiology</i> , 2020 , 11, 1764	5.7	4
35	Effects on the hepatic transcriptome of chicken embryos in ovo exposed to phenobarbital. Ecotoxicology and Environmental Safety, 2018 , 160, 94-103	7	4
34	Cytotoxicity and Risk Assessments of Environmental Pollutants Using Fibroblasts of a Stranded Finless Porpoise (). <i>Environmental Science & Environmental Pollutants Using Fibroblasts of a Stranded Fibroblasts of a Stranded Fibroblasts of Environmental Pollutants Using Fibroblasts of a Stranded Fibroblasts of Environmental Pollutants Using Fibroblasts of Environmental Science & Environmental Pollutants Using Fibroblasts of Environmental Pollutants Using Fibroblasts Octobrasts Octobrasts Octobra</i>	10.3	3

33	Molecular evidence predicts aryl hydrocarbon receptor ligand insensitivity in the peregrine falcon (Falco peregrines). <i>European Journal of Wildlife Research</i> , 2012 , 58, 167-175	2	3
32	Strain differences in the proteome of dioxin-sensitive and dioxin-resistant mice treated with 2,3,7,8-tetrabromodibenzo-p-dioxin. <i>Archives of Toxicology</i> , 2017 , 91, 1763-1782	5.8	3
31	Differential display system with vertebrate-common degenerate oligonucleotide primers: uncovering genes responsive to dioxin in avian embryonic liver. <i>Environmental Science & Environmental </i>	10.3	3
30	Molecular evaluation of a new highly sensitive aryl hydrocarbon receptor in ostriches. <i>Poultry Science</i> , 2013 , 92, 1921-9	3.9	3
29	Assessment of Risks of Dioxins for Aryl Hydrocarbon Receptor-Mediated Effects in Polar Bear () by in Vitro and in Silico Approaches. <i>Environmental Science & Environmental Sc</i>	10.3	3
28	Mother to Fetus Transfer of Hydroxylated Polychlorinated Biphenyl Congeners (OH-PCBs) in the Japanese Macaque (): Extrapolation of Exposure Scenarios to Humans. <i>Environmental Science & Technology</i> , 2020 , 54, 11386-11395	10.3	3
27	Interspecies differences in cytochrome P450-mediated metabolism of neonicotinoids among cats, dogs, rats, and humans. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2021 , 239, 108898	3.2	3
26	Effects on the liver lipidome of rat offspring prenatally exposed to bisphenol A. <i>Science of the Total Environment</i> , 2021 , 759, 143466	10.2	3
25	In vitro assessment of effects of persistent organic pollutants on the transactivation of estrogen receptor hand [ER] from the Baikal seal (Pusa sibirica). <i>Ecotoxicology and Environmental Safety</i> , 2019 , 181, 463-471	7	2
24	The AHR1-ARNT1 dimerization pair is a major regulator of the response to natural ligands, but not to TCDD, in the chicken. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 201, 110835	7	2
23	De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus). <i>Environmental Pollution</i> , 2020 , 264, 114642	9.3	2
22	Accumulation properties of polychlorinated biphenyl congeners in Yusho patients and prediction of their cytochrome P450-dependent metabolism by in silico analysis. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 16455-16463	5.1	2
21	Transient suppression of AHR activity in early red seabream embryos does not prevent the disruption of peripheral nerve projection by 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>Aquatic Toxicology</i> , 2014 , 154, 39-47	5.1	2
20	Negative correlation between plasma thyroid hormone levels and chlorinated hydrocarbon levels accumulated in seals from the coast of Hokkaido, Japan 2001 , 20, 1092		2
19	On-site Remediation of Soil Contaminated by Dioxins with an Indirect Heating Process. <i>Journal of Environmental Chemistry</i> , 2005 , 15, 311-320	0.3	2
18	Intake and excretion of arsenicals in green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata). <i>Environmental Chemistry</i> , 2011 , 8, 19	3.2	2
17	Effects on the Liver Transcriptome in Baltic Salmon: Contributions of Contamination with Organohalogen Compounds and Origin of Salmon. <i>Environmental Science & Description</i> , 2020, 54, 15246-15256	10.3	2
16	2,3,7,8-Tetrachlorodibenzo-p-dioxin prompted differentiation to CD4CD8CD25 and CD4CD8CD25 Tregs and altered expression of immune-related genes in the thymus of chicken embryos. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 211, 111947	7	2

15	Directly Reprogrammed Neurons as a Tool to Assess Neurotoxicity of the Contaminant 4-Hydroxy-2',3,5,5'-tetrachlorobiphenyl (4'OH-CB72) in Melon-Headed Whales. <i>Environmental Science & Environmental </i>	10.3	2
14	The aryl hydrocarbon receptor 2 potentially mediates cytochrome P450 1A induction in the jungle crow (Corvus macrorhynchos). <i>Ecotoxicology and Environmental Safety</i> , 2019 , 171, 99-111	7	2
13	Effects of tris(2-chloroethyl) phosphate exposure on chicken embryos in a shell-less incubation system. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 207, 111263	7	2
12	In Vitro Assessment of Activation of Baikal Seal (Pusa sibirica) Peroxisome Proliferator-Activated Receptor (by Polybrominated Diphenyl Ethers. <i>Environmental Science & Diphenyl Ethers</i> , 1183	31 ^{<u>1</u>718}	3 <i>7</i> ²
11	Prediction of adverse effects of effluents containing phenolic compounds in the Ba River on the ovary of fish (Hemiculter leucisculus) using transcriptomic and metabolomic analyses. <i>Science of the Total Environment</i> , 2021 , 801, 149554	10.2	2
10	Association of XRCC1 polymorphisms with arsenic methylation. <i>Archives of Toxicology</i> , 2016 , 90, 1009-	1 2 5.8	1
9	Effects of gestational exposure to bisphenol A on the hepatic transcriptome and lipidome of rat dams: Intergenerational comparison of effects in the offspring <i>Science of the Total Environment</i> , 2022 , 826, 153990	10.2	1
8	Relationship between Avian AHR1 Genotype and Ecological Factors as a Dioxin-sensitive Facto. Japanese Journal of Zoo and Wildlife Medicine, 2017 , 22, 57-61	0.1	
7	Hazard assessment of chemicals in avian embryos by using "OMICS" approaches: What are the challenges?. <i>Integrated Environmental Assessment and Management</i> , 2019 , 15, 482-484	2.5	
6	A microarray data analysis method to evaluate the impact of contaminants on wild animals. <i>Science of the Total Environment</i> , 2010 , 408, 5824-7	10.2	
5	Response to Comment on B utyltin Contamination in Marine Mammals from North Pacific and Asian Coastal Waters[]Environmental Science & Technology, 1998 , 32, 2355-2355	10.3	
4	Assessment of binding potencies of polychlorinated biphenyls and polybrominated diphenyl ethers with Baikal seal and mouse constitutive androstane receptors: Comparisons across species and congeners. <i>Science of the Total Environment</i> , 2022 , 806, 150631	10.2	
3	Effects of exposure to oxytetracycline on the liver proteome of red seabream (Pagrus major) in a real administration scenario <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2022 , 109325	3.2	
2	Accumulation patterns of polychlorinated biphenyl congeners and organochlorine pesticides in Steller's sea eagles and white-tailed sea eagles, threatened species, in Hokkaido, Japan. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 842-7	3.8	
1	Effects of 1,3,7-tribromodibenzo-p-dioxin, a natural dioxin on chicken embryos: Comparison with	- 7 0	

effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin.. *Ecotoxicology and Environmental Safety*, **2022**, 237, 113538

12