List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681847/publications.pdf Version: 2024-02-01

		5268	5679
237	28,579	83	162
papers	citations	h-index	g-index
243	243	243	16220
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	47.7	6,279
2	Biosensing by luminogens with aggregation-induced emission characteristics. Chemical Society Reviews, 2015, 44, 4228-4238.	38.1	1,128
3	Aggregation-induced emission: fundamental understanding and future developments. Materials Horizons, 2019, 6, 428-433.	12.2	564
4	Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society, 2012, 134, 17972-17981.	13.7	545
5	Targeted Theranostic Platinum(IV) Prodrug with a Built-In Aggregation-Induced Emission Light-Up Apoptosis Sensor for Noninvasive Early Evaluation of Its Therapeutic Responses in Situ. Journal of the American Chemical Society, 2014, 136, 2546-2554.	13.7	439
6	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
7	Full-Range Intracellular pH Sensing by an Aggregation-Induced Emission-Active Two-Channel Ratiometric Fluorogen. Journal of the American Chemical Society, 2013, 135, 4926-4929.	13.7	394
8	Long-Term Fluorescent Cellular Tracing by the Aggregates of AIE Bioconjugates. Journal of the American Chemical Society, 2013, 135, 8238-8245.	13.7	357
9	Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. Chemical Science, 2017, 8, 5440-5446.	7.4	344
10	Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chemical Science, 2018, 9, 3685-3693.	7.4	343
11	Realâ€Time and Highâ€Resolution Bioimaging with Bright Aggregationâ€Induced Emission Dots in Shortâ€Wave Infrared Region. Advanced Materials, 2018, 30, e1706856.	21.0	341
12	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.	12.8	296
13	Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nature Communications, 2018, 9, 1848.	12.8	286
14	Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nature Communications, 2020, 11, 1255.	12.8	283
15	A Ratiometric Fluorescent Probe Based on ESIPT and AIE Processes for Alkaline Phosphatase Activity Assay and Visualization in Living Cells. ACS Applied Materials & Interfaces, 2014, 6, 17245-17254.	8.0	281
16	Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano, 2018, 12, 8145-8159.	14.6	281
17	Highly Efficient Photosensitizers with Farâ€Red/Nearâ€Infrared Aggregationâ€Induced Emission for In Vitro and In Vivo Cancer Theranostics. Advanced Materials, 2018, 30, e1802105.	21.0	266
18	Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457.	21.0	254

#	Article	IF	CITATIONS
19	Mitochondrionâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. Advanced Materials, 2017, 29, 1606167.	21.0	222
20	Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio Materials, 2018, 1, 1768-1786.	4.6	219
21	Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice. ACS Nano, 2017, 11, 7177-7188.	14.6	212
22	AlEgens for biological process monitoring and disease theranostics. Biomaterials, 2017, 146, 115-135.	11.4	206
23	lonization and Anionâʾʾl̈€ ⁺ Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. Journal of the American Chemical Society, 2017, 139, 16974-16979.	13.7	201
24	Why Do Simple Molecules with "Isolated―Phenyl Rings Emit Visible Light?. Journal of the American Chemical Society, 2017, 139, 16264-16272.	13.7	201
25	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	14.6	199
26	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.	13.8	198
27	In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. Journal of the American Chemical Society, 2019, 141, 5612-5616.	13.7	196
28	Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.	14.6	193
29	AIE-active theranostic system: selective staining and killing of cancer cells. Chemical Science, 2017, 8, 1822-1830.	7.4	187
30	AlEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg ²⁺ sensing. Chemical Science, 2017, 8, 2047-2055.	7.4	187
31	Fluorescent Light-up Probe with Aggregation-Induced Emission Characteristics for Alkaline Phosphatase Sensing and Activity Study. ACS Applied Materials & Interfaces, 2013, 5, 8784-8789.	8.0	184
32	Facile Synthesis of Red/NIR AIE Luminogens with Simple Structures, Bright Emissions, and High Photostabilities, and Their Applications for Specific Imaging of Lipid Droplets and Imageâ€Guided Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1704039.	14.9	182
33	Boosting Nonâ€Radiative Decay to Do Useful Work: Development of a Multiâ€Modality Theranostic System from an AlEgen. Angewandte Chemie - International Edition, 2019, 58, 5628-5632.	13.8	180
34	Activatable Fluorescent Nanoprobe with Aggregationâ€Induced Emission Characteristics for Selective In Vivo Imaging of Elevated Peroxynitrite Generation. Advanced Materials, 2016, 28, 7249-7256.	21.0	177
35	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. Journal of the American Chemical Society, 2020, 142, 15146-15156.	13.7	177
36	An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by "switch + knob―effect. Chemical Science, 2012, 3, 1804.	7.4	171

#	Article	IF	CITATIONS
37	Dramatic Differences in Aggregation-Induced Emission and Supramolecular Polymerizability of Tetraphenylethene-Based Stereoisomers. Journal of the American Chemical Society, 2017, 139, 10150-10156.	13.7	170
38	Structural and process controls of AlEgens for NIR-II theranostics. Chemical Science, 2021, 12, 3427-3436.	7.4	169
39	Exploration of biocompatible AIEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	7.4	167
40	Two Are Better Than One: A Design Principle for Ultralongâ€Persistent Luminescence of Pure Organics. Advanced Materials, 2020, 32, e2001026.	21.0	164
41	Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AlEgens. Advanced Materials, 2020, 32, e1906493.	21.0	160
42	AIE-based luminescence probes for metal ion detection. Coordination Chemistry Reviews, 2021, 429, 213693.	18.8	157
43	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the American Chemical Society, 2019, 141, 15111-15120.	13.7	155
44	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AlEgens at Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.	6.7	154
45	Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AlEâ€Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie - International Edition, 2020, 59, 9470-9477.	13.8	153
46	Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polymer Chemistry, 2017, 8, 1722-1727.	3.9	152
47	Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 9610-9616.	13.8	146
48	In Situ Monitoring of RAFT Polymerization by Tetraphenylethyleneâ€Containing Agents with Aggregationâ€Induced Emission Characteristics. Angewandte Chemie - International Edition, 2018, 57, 6274-6278.	13.8	145
49	Lightâ€Up Probe for Targeted and Activatable Photodynamic Therapy with Realâ€Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses. Advanced Functional Materials, 2015, 25, 6586-6595.	14.9	144
50	Theranostics based on AlEgens. Theranostics, 2018, 8, 4925-4956.	10.0	143
51	Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. Journal of the American Chemical Society, 2020, 142, 3959-3969.	13.7	143
52	Longâ€Term Realâ€Time In Vivo Drug Release Monitoring with AIE Thermogelling Polymer. Small, 2017, 13, 1603404.	10.0	140
53	Functionality and versatility of aggregation-induced emission luminogens. Applied Physics Reviews, 2017, 4, .	11.3	138
54	AIE luminogens as fluorescent bioprobes. TrAC - Trends in Analytical Chemistry, 2020, 123, 115769.	11.4	133

#	Article	IF	CITATIONS
55	ACQâ€ŧoâ€AIE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€Photon NIR Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 12822-12826.	13.8	131
56	Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AlEgens. Chemical Science, 2020, 11, 2494-2503.	7.4	131
57	Aggregationâ€Induced Nonlinear Optical Effects of AlEgen Nanocrystals for Ultradeep In Vivo Bioimaging. Advanced Materials, 2019, 31, e1904799.	21.0	126
58	Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nature Communications, 2019, 10, 2952.	12.8	125
59	Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.	14.9	124
60	Engineering Sensor Arrays Using Aggregationâ€Induced Emission Luminogens for Pathogen Identification. Advanced Functional Materials, 2019, 29, 1805986.	14.9	122
61	Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chemical Science, 2018, 9, 5679-5687.	7.4	119
62	AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 2019, 9, 3223-3248.	10.0	116
63	Ultrafast Delivery of Aggregation-Induced Emission Nanoparticles and Pure Organic Phosphorescent Nanocrystals by Saponin Encapsulation. Journal of the American Chemical Society, 2017, 139, 14792-14799.	13.7	114
64	Killing G(+) or G(â^') Bacteria? The Important Role of Molecular Charge in AIEâ€Active Photosensitizers. Small Methods, 2020, 4, 2000046.	8.6	114
65	An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose. Chemical Communications, 2016, 52, 10076-10079.	4.1	113
66	An acidic pH independent piperazine–TPE AIEgen as a unique bioprobe for lysosome tracing. Chemical Science, 2017, 8, 7593-7603.	7.4	112
67	Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging. Journal of the American Chemical Society, 2018, 140, 6904-6911.	13.7	112
68	Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. Chemical Science, 2019, 10, 3494-3501.	7.4	112
69	Red/NIRâ€Emissive Benzo[<i>d</i>]imidazole ored AIEgens: Facile Molecular Design for Wavelength Extending and In Vivo Tumor Metabolic Imaging. Advanced Materials, 2018, 30, e1805220.	21.0	106
70	Highly Fluorescent and Photostable Probe for Longâ€Term Bacterial Viability Assay Based on Aggregationâ€Induced Emission. Advanced Healthcare Materials, 2014, 3, 88-96.	7.6	105
71	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	14.9	105
72	Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. Chemical Science, 2018, 9, 6118-6125.	7.4	101

#	Article	IF	CITATIONS
73	Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. CheM, 2019, 5, 2657-2677.	11.7	100
74	Ultrabright red AlEgens for two-photon vascular imaging with high resolution and deep penetration. Chemical Science, 2018, 9, 2705-2710.	7.4	98
75	Construction of Functional Macromolecules with Well-Defined Structures by Indium-Catalyzed Three-Component Polycoupling of Alkynes, Aldehydes, and Amines. Macromolecules, 2013, 46, 3246-3256.	4.8	97
76	Peptide-Induced AlEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes. Analytical Chemistry, 2016, 88, 3872-3878.	6.5	97
77	Multifunctional AIEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging. Advanced Functional Materials, 2018, 28, 1704589.	14.9	96
78	Rational design of fluorescent light-up probes based on an AIE luminogen for targeted intracellular thiol imaging. Chemical Communications, 2014, 50, 295-297.	4.1	95
79	A near-infrared AlEgen for specific imaging of lipid droplets. Chemical Communications, 2016, 52, 5957-5960.	4.1	93
80	Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials, 2020, 230, 119582.	11.4	91
81	Amplification of Activated Near-Infrared Afterglow Luminescence by Introducing Twisted Molecular Geometry for Understanding Neutrophil-Involved Diseases. Journal of the American Chemical Society, 2022, 144, 3429-3441.	13.7	91
82	Light-up probe based on AlEgens: dual signal turn-on for caspase cascade activation monitoring. Chemical Science, 2017, 8, 2723-2728.	7.4	89
83	Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. ACS Nano, 2018, 12, 9549-9557.	14.6	87
84	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 4536-4540.	13.8	87
85	AlEgens for microbial detection and antimicrobial therapy. Biomaterials, 2021, 268, 120598.	11.4	86
86	A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research, 2018, 2018, 3152870.	5.7	86
87	Red AIEâ€Active Fluorescent Probes with Tunable Organelleâ€&pecific Targeting. Advanced Functional Materials, 2020, 30, 1909268.	14.9	85
88	Targeted theranostic prodrugs based on an aggregation-induced emission (AIE) luminogen for real-time dual-drug tracking. Chemical Communications, 2014, 50, 11465-11468.	4.1	83
89	Rational Design of Perylenediimideâ€Substituted Triphenylethylene to Electron Transporting Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission. Advanced Functional Materials, 2018, 28, 1705609.	14.9	82
90	A highly efficient and AIE-active theranostic agent from natural herbs. Materials Chemistry Frontiers, 2019, 3, 1454-1461.	5.9	82

#	Article	IF	CITATIONS
91	Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials, 2019, 208, 72-82.	11.4	82
92	A red-emissive antibody–AlEgen conjugate for turn-on and wash-free imaging of specific cancer cells. Chemical Science, 2017, 8, 7014-7024.	7.4	79
93	Side Areaâ€Assisted 3D Evaporator with Antibiofouling Function for Ultraâ€Efficient Solar Steam Generation. Advanced Materials, 2021, 33, e2102258.	21.0	79
94	A photostable AIEgen for nucleolus and mitochondria imaging with organelle-specific emission. Journal of Materials Chemistry B, 2016, 4, 2614-2619.	5.8	78
95	Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. ACS Nano, 2020, 14, 14228-14239.	14.6	78
96	An Aggregationâ€Inducedâ€Emission Platform for Direct Visualization of Interfacial Dynamic Selfâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 13518-13522.	13.8	77
97	A simple mitochondrial targeting AlEgen for image-guided two-photon excited photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 2557-2565.	5.8	77
98	Detection of oligomers and fibrils of $\hat{l}\pm$ -synuclein by AlEgen with strong fluorescence. Chemical Communications, 2015, 51, 1866-1869.	4.1	75
99	Fluorogenic Ag ⁺ –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angewandte Chemie - International Edition, 2018, 57, 5750-5753.	13.8	75
100	AlEgens for real-time naked-eye sensing of hydrazine in solution and on a paper substrate: structure-dependent signal output and selectivity. Journal of Materials Chemistry C, 2016, 4, 2834-2842.	5.5	74
101	High-Contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by Fluorescent AlE Probes. Macromolecules, 2017, 50, 5807-5815.	4.8	73
102	1 + 1 >> 2: Dramatically Enhancing the Emission Efficiency of TPEâ€Based AlEgens but Keeping their Emission Color through Tailored Alkyl Linkages. Advanced Functional Materials, 2018, 28, 1707210.	14.9	73
103	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie - International Edition, 2018, 57, 5011-5015.	13.8	73
104	Synthesis of Imidazoleâ€Based AlEgens with Wide Color Tunability and Exploration of their Biological Applications. Advanced Functional Materials, 2016, 26, 824-832.	14.9	72
105	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.	14.6	72
106	Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie - International Edition, 2020, 59, 20371-20375.	13.8	72
107	Dragonfly-shaped near-infrared AlEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials, 2020, 248, 120036.	11.4	71
108	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	6.5	70

#	Article	IF	CITATIONS
109	In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018, 9, 4961.	12.8	70
110	Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. Journal of Materials Chemistry B, 2014, 2, 231-238.	5.8	69
111	Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility. Chemical Science, 2017, 8, 4634-4643.	7.4	69
112	A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells. Materials Horizons, 2015, 2, 100-105.	12.2	68
113	Highly Emissive AlEgens with Multiple Functions: Facile Synthesis, Chromism, Specific Lipid Droplet Imaging, Apoptosis Monitoring, and In Vivo Imaging. Chemistry of Materials, 2018, 30, 7892-7901.	6.7	68
114	Sparks fly when AIE meets with polymers. Materials Chemistry Frontiers, 2019, 3, 2207-2220.	5.9	68
115	Diaminomaleonitrile-based Schiff bases: aggregation-enhanced emission, red fluorescence, mechanochromism and bioimaging applications. Journal of Materials Chemistry C, 2016, 4, 10430-10434.	5.5	65
116	A Lysosomeâ€Targeting AlEgen for Autophagy Visualization. Advanced Healthcare Materials, 2016, 5, 427-431.	7.6	65
117	Drawing a clear mechanistic picture for the aggregation-induced emission process. Materials Chemistry Frontiers, 2019, 3, 1143-1150.	5.9	64
118	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€5witchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie, 2018, 130, 5105-5109.	2.0	63
119	A Substitutionâ€Dependent Lightâ€Up Fluorescence Probe for Selectively Detecting Fe ³⁺ Ions and Its Cell Imaging Application. Advanced Functional Materials, 2018, 28, 1802833.	14.9	62
120	AIE Bioconjugates for Biomedical Applications. Advanced Optical Materials, 2020, 8, 2000162.	7.3	62
121	Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. Nature Communications, 2021, 12, 960.	12.8	62
122	The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications. Materials Chemistry Frontiers, 2018, 2, 1498-1507.	5.9	61
123	Organic Long-Persistent Luminescence from a Single-Component Aggregate. Journal of the American Chemical Society, 2022, 144, 3050-3062.	13.7	61
124	Multicomponent Click Polymerization: A Facile Strategy toward Fused Heterocyclic Polymers. Macromolecules, 2016, 49, 5475-5483.	4.8	60
125	A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. Journal of Materials Chemistry B, 2018, 6, 3894-3903.	5.8	60
126	Making the Best Use of Excited-State Energy: Multimodality Theranostic Systems Based on Second Near-Infrared (NIR-II) Aggregation-Induced Emission Luminogens (AlEgens). , 2020, 2, 1033-1040.		60

#	Article	IF	CITATIONS
127	Multifunctional Supramolecular Assemblies with Aggregation-Induced Emission (AIE) for Cell Line Identification, Cell Contamination Evaluation, and Cancer Cell Discrimination. ACS Nano, 2020, 14, 7552-7563.	14.6	59
128	One stone, three birds: one AlEgen with three colors for fast differentiation of three pathogens. Chemical Science, 2020, 11, 4730-4740.	7.4	59
129	Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. Journal of Materials Chemistry B, 2014, 2, 4134-4141.	5.8	58
130	A New Strategy toward "Simple―Waterâ€Soluble AIE Probes for Hypoxia Detection. Advanced Functional Materials, 2019, 29, 1903278.	14.9	58
131	AlE Featured Inorganic–Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring. Nano Letters, 2019, 19, 2272-2279.	9.1	58
132	Lab-in-cell based on spontaneous amino-yne click polymerization. Science China Chemistry, 2019, 62, 1198-1203.	8.2	55
133	Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today, 2020, 34, 100893.	11.9	53
134	Smart Probe for Tracing Cancer Therapy: Selective Cancer Cell Detection, Image-Guided Ablation, and Prediction of Therapeutic Response In Situ. Small, 2015, 11, 4682-4690.	10.0	52
135	<i>In vivo</i> monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chemical Science, 2020, 11, 3152-3163.	7.4	52
136	AlEgen based light-up probes for live cell imaging. Science China Chemistry, 2016, 59, 53-61.	8.2	50
137	Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications. Journal of Materials Chemistry B, 2017, 5, 1650-1657.	5.8	50
138	A Simple and Sensitive Method for an Important Physical Parameter: Reliable Measurement of Glass Transition Temperature by AlEgens. Macromolecules, 2017, 50, 7620-7627.	4.8	50
139	Rational design of red AlEgens with a new core structure from non-emissive heteroaromatics. Chemical Science, 2018, 9, 7829-7834.	7.4	50
140	Visualization and Manipulation of Molecular Motion in the Solid State through Photoinduced Clusteroluminescence. Journal of Physical Chemistry Letters, 2019, 10, 7077-7085.	4.6	50
141	Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Interfaces, 2020, 12, 8040-8049.	8.0	50
142	Efficient Killing of Multidrugâ€Resistant Internalized Bacteria by AlEgens In Vivo. Advanced Science, 2021, 8, 2001750.	11.2	49
143	Multifunctional Au ^I â€based AlEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angewandte Chemie - International Edition, 2020, 59, 7097-7105.	13.8	49
144	A recyclable and reusable supported Cu(I) catalyzed azide-alkyne click polymerization. Scientific Reports, 2014, 4, 5107.	3.3	48

#	Article	IF	CITATIONS
145	Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.	11.4	48
146	Specific nucleic acid detection based on fluorescent light-up probe from fluorogens with aggregation-induced emission characteristics. RSC Advances, 2013, 3, 10135.	3.6	47
147	Three-Component Regio- and Stereoselective Polymerizations toward Functional Chalcogen-Rich Polymers with AIE-Activities. Journal of the American Chemical Society, 2019, 141, 14712-14719.	13.7	47
148	Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infraredâ€II Fluorescence Imaging and Near Infraredâ€I Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2102213.	14.9	47
149	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.	6.7	46
150	Boosting Nonâ€Radiative Decay to Do Useful Work: Development of a Multiâ€Modality Theranostic System from an AlEgen. Angewandte Chemie, 2019, 131, 5684-5688.	2.0	46
151	Single AlEgen for multiple tasks: Imaging of dual organelles and evaluation of cell viability. Biomaterials, 2020, 242, 119924.	11.4	46
152	Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. ACS Nano, 2021, 15, 12129-12139.	14.6	46
153	Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano, 2019, 13, 11863-11873.	14.6	45
154	Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AIEgens. Chemical Science, 2020, 11, 7676-7684.	7.4	45
155	Specific and Quantitative Detection of Albumin in Biological Fluids by Tetrazolate-Functionalized Water-Soluble AIEgens. ACS Applied Materials & Interfaces, 2019, 11, 29619-29629.	8.0	44
156	AIE-based energy transfer systems for biosensing, imaging, and therapeutics. TrAC - Trends in Analytical Chemistry, 2020, 122, 115743.	11.4	44
157	A highly fluorescent AIE-active theranostic agent with anti-tumor activity to specific cancer cells. Nanoscale, 2016, 8, 12520-12523.	5.6	42
158	Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. Materials Horizons, 2019, 6, 405-411.	12.2	41
159	Making Aggregation-Induced Emission Luminogen More Valuable by Gold: Enhancing Anticancer Efficacy by Suppressing Thioredoxin Reductase Activity. ACS Nano, 2021, 15, 9176-9185.	14.6	41
160	SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AIEgens. Analytical Chemistry, 2019, 91, 2169-2176.	6.5	40
161	Phototriggered Aggregationâ€Induced Emission and Direct Generation of 4D Soft Patterns. Advanced Materials, 2021, 33, e2105113.	21.0	40
162	Highly efficient phototheranostics of macrophage-engulfed Gram-positive bacteria using a NIR luminogen with aggregation-induced emission characteristics. Biomaterials, 2020, 261, 120340.	11.4	39

#	Article	IF	CITATIONS
163	Recent Advances in Aggregationâ€Induced Emission Materials and Their Biomedical and Healthcare Applications. Advanced Healthcare Materials, 2021, 10, e2101055.	7.6	36
164	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie, 2018, 130, 15409-15413.	2.0	35
165	Catalyst-Free Multicomponent Tandem Polymerizations of Alkyne and Amines toward Nontraditional Intrinsic Luminescent Poly(aminomaleimide)s. Macromolecules, 2020, 53, 3756-3764.	4.8	34
166	A lipophilic AIEgen for lipid droplet imaging and evaluation of the efficacy of HIF-1 targeting drugs. Journal of Materials Chemistry B, 2020, 8, 1516-1523.	5.8	34
167	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia for Cancer Therapy. Advanced Science, 2022, 9, e2104885.	11.2	34
168	Hybridization induced fluorescence turn-on of AlEgen–oligonucleotide conjugates for specific DNA detection. RSC Advances, 2015, 5, 28332-28337.	3.6	33
169	Polyarylcyanation of Diyne: A One-Pot Three-Component Convenient Route for <i>In Situ</i> Generation of Polymers with AIE Characteristics. Macromolecules, 2016, 49, 8888-8898.	4.8	32
170	Sensitive and Specific Detection of <scp>l</scp> -Lactate Using an AIE-Active Fluorophore. ACS Applied Materials & Interfaces, 2017, 9, 38153-38158.	8.0	32
171	Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & amp; Interfaces, 2019, 11, 17306-17312.	8.0	32
172	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AlEgens. Chemical Science, 2020, 11, 8438-8447.	7.4	32
173	Color-tunable and highly solid emissive AIE molecules: synthesis, photophysics, data storage and biological application. Journal of Materials Chemistry C, 2015, 3, 3445-3451.	5.5	31
174	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie - International Edition, 2021, 60, 19222-19231.	13.8	29
175	Unusual Through‣pace Interactions between Oxygen Atoms that Mediate Inverse Morphochromism of an AIE Luminogen. Angewandte Chemie - International Edition, 2020, 59, 8552-8559.	13.8	28
176	Multicomponent polymerization: development of a one-pot synthetic route to functional polymers using diyne, N-sulfonyl azide and water/ethanol as reactants. Polymer Chemistry, 2016, 7, 5646-5654.	3.9	27
177	Ratiometric Detection of Mitochondrial Thiol with a Two-Photon Active AlEgen. ACS Applied Bio Materials, 2019, 2, 3120-3127.	4.6	26
178	Visualizing semipermeability of the cell membrane using a pH-responsive ratiometric AIEgen. Chemical Science, 2020, 11, 5753-5758.	7.4	26
179	How Do Molecular Motions Affect Structures and Properties at Molecule and Aggregate Levels?. Journal of the American Chemical Society, 2021, 143, 11820-11827.	13.7	26
180	A photostable AIE luminogen with near infrared emission for monitoring morphological change of plasma membrane. Journal of Materials Chemistry B, 2018, 6, 1501-1507.	5.8	25

#	Article	IF	CITATIONS
181	ACQâ€ŧoâ€AlE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€Photon NIR Bioimaging. Angewandte Chemie, 2020, 132, 12922-12926.	2.0	25
182	Wash-free detection and bioimaging by AlEgens. Materials Chemistry Frontiers, 2021, 5, 723-743.	5.9	25
183	In Situ Monitoring of RAFT Polymerization by Tetraphenylethyleneâ€Containing Agents with Aggregationâ€Induced Emission Characteristics. Angewandte Chemie, 2018, 130, 6382-6386.	2.0	24
184	Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AlEgen. Chemical Science, 2021, 12, 709-717.	7.4	23
185	AlEgen for cancer discrimination. Materials Science and Engineering Reports, 2021, 146, 100649.	31.8	23
186	Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AlEâ€Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie, 2020, 132, 9557-9564.	2.0	22
187	Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 9697-9703.	2.0	22
188	Diagnosis of fatty liver disease by a multiphoton-active and lipid-droplet-specific AlEgen with nonaromatic rotors. Materials Chemistry Frontiers, 2021, 5, 1853-1862.	5.9	22
189	An AIE-based bioprobe for differentiating the early and late stages of apoptosis mediated by H ₂ O ₂ . Journal of Materials Chemistry B, 2016, 4, 5510-5514.	5.8	21
190	Oneâ€Pot Synthesis of Customized Metal–Phenolicâ€Networkâ€Coated AIE Dots for In Vivo Bioimaging. Advanced Science, 2022, 9, e2104997.	11.2	20
191	Visualizing and monitoring interface structures and dynamics by luminogens with aggregation-induced emission. Journal of Applied Physics, 2019, 126, 050901.	2.5	19
192	Sensitive and specific detection of peroxynitrite and <i>in vivo</i> imaging of inflammation by a "simple―AlE bioprobe. Materials Chemistry Frontiers, 2021, 5, 1830-1835.	5.9	19
193	Aggregationâ€induced emission luminogens for augmented photosynthesis. Exploration, 2022, 2, .	11.0	19
194	Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized from "1 + 2―Polycoupling of Internal Alkynes and Arylboronic Acids. Macromolecules, 2016, 49, 5817-5830.	4.8	18
195	Precise and long-term tracking of mitochondria in neurons using a bioconjugatable and photostable AIE luminogen. Chemical Science, 2022, 13, 2965-2970.	7.4	18
196	Multifunctional Au I â€based AlEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angewandte Chemie, 2020, 132, 7163-7171.	2.0	17
197	Sterol-containing tetraphenylethenes: synthesis, aggregation-induced emission, and organogel formation. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 325-330.	0.4	16
198	Synthesis of Functional Poly(propargyl imine)s by Multicomponent Polymerizations of Bromoarenes, Isonitriles, and Alkynes. ACS Macro Letters, 2017, 6, 1352-1356.	4.8	16

#	Article	IF	CITATIONS
199	Strategies in boosting photosensitization for biomedical applications. Science China Chemistry, 2022, 65, 647-649.	8.2	16
200	Aggregation-induced emission luminogen-based fluorescence detection of hypoxanthine: a probe for biomedical diagnosis of energy metabolism-related conditions. Journal of Materials Chemistry B, 2018, 6, 4575-4578.	5.8	15
201	Vision redemption: Self-reporting AlEgens for combined treatment of bacterial keratitis. Biomaterials, 2021, 279, 121227.	11.4	15
202	A versatile AIE fluorogen with selective reactivity to primary amines for monitoring amination, protein labeling, and mitochondrial staining. Aggregate, 2023, 4, .	9.9	15
203	Uptake, Distribution, and Bioimaging Applications of Aggregation-Induced Emission Saponin Nanoparticles in <i>Arabidopsis thaliana</i> . ACS Applied Materials & Interfaces, 2017, 9, 28298-28304.	8.0	14
204	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie, 2019, 131, 4584-4588.	2.0	14
205	Catalyst-Free Spontaneous Polymerization with 100% Atom Economy: Facile Synthesis of Photoresponsive Polysulfonates with Multifunctionalities. Jacs Au, 2021, 1, 344-353.	7.9	14
206	Taming Reactive Oxygen Species: Mitochondria-Targeting Aggregation-Induced Emission Luminogen for Neuron Protection via Photosensitization-Triggered Autophagy. CCS Chemistry, 2022, 4, 2249-2257.	7.8	14
207	Aggregation-Induced Emission Luminogens for Cell Death Research. ACS Bio & Med Chem Au, 2022, 2, 236-257.	3.7	14
208	Donor–acceptor π-conjugated aggregation-induced emission molecules for reversible nanometer-scale data storage. Journal of Materials Chemistry C, 2016, 4, 5363-5369.	5.5	13
209	Organic Mitoprobes based on Fluorogens with Aggregationâ€Induced Emission. Israel Journal of Chemistry, 2018, 58, 860-873.	2.3	13
210	Bioâ€orthogonal AIE Dots Based on Polyyneâ€Bridged Redâ€emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. Chemistry - an Asian Journal, 2019, 14, 770-774.	3.3	13
211	Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700.	3.3	13
212	Manipulating the Molecular Backbone to Achieve Highly Emissive Skyâ€Blue AIEgens and Their Applications in Nondoped Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2018, 4, 1800354.	5.1	12
213	Turning on Light Emission of a Dark Proâ€Aggregationâ€Induced Emission Luminogen in Aqueous Media Through Reductaseâ€Modulated Derotation. Advanced NanoBiomed Research, 2021, 1, 2000080.	3.6	12
214	A ratiometric theranostic system for visualization of ONOO ^{â^'} species and reduction of drug-induced hepatotoxicity. Biomaterials Science, 2022, 10, 1083-1089.	5.4	12
215	Molecular Crystal Engineering of Organic Chromophores for NIR-II Fluorescence Quantification of Cerebrovascular Function. ACS Nano, 2022, 16, 3323-3331.	14.6	12
216	Leveraging bacterial survival mechanism for targeting and photodynamic inactivation of bacterial biofilms with red natural AIEgen. Cell Reports Physical Science, 2022, 3, 100803.	5.6	12

#	Article	IF	CITATIONS
217	lridium-catalyzed polymerization of benzoic acids and internal diynes: a new route for constructing high molecular weight polynaphthalenes without the constraint of monomer stoichiometry. Polymer Chemistry, 2017, 8, 1393-1403.	3.9	11
218	A facile design for multifunctional AIEgen based on tetraaniline derivatives. Science China Chemistry, 2019, 62, 732-738.	8.2	9
219	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	6.7	9
220	Fluorogenic Ag ⁺ –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angewandte Chemie, 2018, 130, 5852-5855.	2.0	8
221	Dual-Mode Ultrasensitive Detection of Nucleic Acids via an Aqueous "Seesaw―Strategy by Combining Aggregation-Induced Emission and Plasmonic Colorimetry. ACS Applied Nano Materials, 2019, 2, 163-169.	5.0	8
222	Real-Time Visualization and Monitoring of Physiological Dynamics by Aggregation-Induced Emission Luminogens (AIEgens). Annual Review of Analytical Chemistry, 2021, 14, 413-435.	5.4	8
223	One-step light-up metabolic probes for <i>in situ</i> discrimination and killing of intracellular bacteria. Materials Chemistry Frontiers, 2022, 6, 450-458.	5.9	8
224	A biocompatible dual-AIEgen system without spectral overlap for quantitation of microbial viability and monitoring of biofilm formation. Materials Horizons, 2021, 8, 1816-1824.	12.2	7
225	Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2560-2583.	6.4	7
226	Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie, 2020, 132, 20551-20555.	2.0	6
227	Unusual Through‧pace Interactions between Oxygen Atoms that Mediate Inverse Morphochromism of an AIE Luminogen. Angewandte Chemie, 2020, 132, 8630-8637.	2.0	5
228	20 Years of Aggregationâ€Induced Emission Research. Advanced Optical Materials, 2020, 8, 2000855.	7.3	5
229	Photodynamic Therapy: Light-Up Probe for Targeted and Activatable Photodynamic Therapy with Real-Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses (Adv. Funct. Mater.) Tj ETQq1 1 ().78 4.3 14	rgBJ /Overlo
230	Regio- and Stereoselective Polymerization of Diynes with Inorganic Comonomer: A Facile Strategy to Conjugated Poly(<i>p</i> -arylene dihalodiene)s with Processability and Postfunctionalizability. Macromolecules, 2018, 51, 3497-3503.	4.8	3
231	Aggregationâ€Induced Emission: Synthesis of Imidazoleâ€Based AlEgens with Wide Color Tunability and Exploration of their Biological Applications (Adv. Funct. Mater. 6/2016). Advanced Functional Materials, 2016, 26, 806-806.	14.9	2
232	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie, 2021, 133, 19371-19380.	2.0	2
233	Drug Delivery: Longâ€Term Realâ€Time In Vivo Drug Release Monitoring with AlE Thermogelling Polymer (Small 7/2017). Small, 2017, 13, .	10.0	1
			_

Radiosensitizers: Mitochondrionâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission 234 Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation (Adv.) Tj ETQq0 0 0 **gBT** /Ove**n**lock 10 Tf

#	Article	IF	CITATIONS
235	Mechanochromism: Multifunctional AlEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging (Adv. Funct. Mater. 1/2018). Advanced Functional Materials, 2018, 28, 1870006.	14.9	1
236	Cancer Therapy: Smart Probe for Tracing Cancer Therapy: Selective Cancer Cell Detection, Image-Guided Ablation, and Prediction of Therapeutic Response In Situ (Small 36/2015). Small, 2015, 11, 4606-4606.	10.0	0
237	Innenrücktitelbild: Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning (Angew. Chem. 35/2021). Angewandte Chemie, 2021, 133, 19643-19643.	2.0	0