Paulo J M Monteiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and water absorption of ancient concrete from Pompeii: An integrated synchrotron microtomography and neutron radiography characterization. Cement and Concrete Research, 2021, 139, 106282.	4.6	24
2	3D Nanotomography of calcium silicate hydrates by transmission electron microscopy. Journal of the American Ceramic Society, 2021, 104, 1852-1862.	1.9	9
3	Coordination environment of Si in calcium silicate hydrates, silicate minerals, and blast furnace slags: A XANES database. Cement and Concrete Research, 2021, 143, 106376.	4.6	27
4	Preferred orientation of calcium aluminosilicate hydrate compacts: Implications for creep and indentation. Cement and Concrete Research, 2021, 143, 106371.	4.6	44
5	Plastic deformation mechanism of calcium-silicate hydrates determined by deviatoric-stress Raman spectroscopy. Cement and Concrete Research, 2021, 146, 106476.	4.6	19
6	Sequestration of solid carbon in concrete: A large-scale enabler of lower-carbon intensity hydrogen from natural gas. MRS Bulletin, 2021, 46, 680-686.	1.7	10
7	Multiscale X-ray tomography of cementitious materials: A review. Cement and Concrete Research, 2020, 128, 105824.	4.6	127
8	Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite. Cement and Concrete Research, 2020, 136, 106170.	4.6	58
9	Mechanical properties of struvite-K: A high-pressure X-ray diffraction study. Cement and Concrete Research, 2020, 136, 106171.	4.6	28
10	Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand. Cement and Concrete Research, 2020, 137, 106195.	4.6	75
11	Structure and Intrinsic Mechanical Properties of Nanocrystalline Calcium Silicate Hydrate. ACS Sustainable Chemistry and Engineering, 2020, 8, 12453-12461.	3.2	57
12	Silicate Bond Characteristics in Calcium–Silicate–Hydrates Determined by High Pressure Raman Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 18335-18345.	1.5	19
13	Materials Data Science for Microstructural Characterization of Archaeological Concrete. MRS Advances, 2020, 5, 305-318.	0.5	16
14	Synchrotron X-ray Raman scattering shows the changes of the Ca environment in C-S-H exposed to high pressure. Cement and Concrete Research, 2020, 132, 106066.	4.6	24
15	Advances in characterizing and understanding the microstructure of cementitious materials. Cement and Concrete Research, 2019, 124, 105806.	4.6	104
16	Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. Journal of Cleaner Production, 2019, 223, 662-679.	4.6	99
17	The Hydration of β- and α′ _H -Dicalcium Silicates: An X-ray Spectromicroscopic Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 2316-2326.	3.2	42
18	Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates. Cement and Concrete Research, 2019, 115, 20-30.	4.6	55

Paulo J M Monteiro

#	Article	IF	CITATIONS
19	The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering. Cement and Concrete Research, 2019, 115, 367-378.	4.6	104
20	Impacts of booming concrete production on water resources worldwide. Nature Sustainability, 2018, 1, 69-76.	11.5	247
21	A high-pressure X-ray diffraction study of the crystalline phases in calcium aluminate cement paste. Cement and Concrete Research, 2018, 108, 38-45.	4.6	24
22	Preferred orientation of calcium aluminosilicate hydrate induced by confined compression. Cement and Concrete Research, 2018, 113, 186-196.	4.6	63
23	Synchrotron X-ray nanotomographic and spectromicroscopic study of the tricalcium aluminate hydration in the presence of gypsum. Cement and Concrete Research, 2018, 111, 130-137.	4.6	79
24	Effect of Gypsum on the Early Hydration of Cubic and Na-Doped Orthorhombic Tricalcium Aluminate. Materials, 2018, 11, 568.	1.3	21
25	Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Scientific Reports, 2017, 7, 44032.	1.6	122
26	Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy. Scientific Reports, 2017, 7, 43298.	1.6	94
27	Nanometer-Resolved Spectroscopic Study Reveals the Conversion Mechanism of CaO·Al ₂ O ₃ ·10H ₂ O to 2CaO·Al ₂ O ₃ ·8H ₂ O and 3CaO·Al ₂ O ₃ ·6H ₂ O at an Elevated Temperature. Crystal Growth	1.4	44
28	Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities. Langmuir, 2017, 33, 3404-3412.	1.6	24
29	Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cement and Concrete Composites, 2017, 80, 91-103.	4.6	59
30	Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution. Langmuir, 2017, 33, 45-55.	1.6	93
31	Interfacial Connection Mechanisms in Calcium–Silicate–Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study. ACS Applied Materials & Interfaces, 2017, 9, 41014-41025.	4.0	106
32	Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Scientific Reports, 2017, 7, 10986.	1.6	110
33	The effect of calcium salts on air-void structure in air-entrained concrete – a statistical and simulated study. Science and Engineering of Composite Materials, 2017, 24, 591-598.	0.6	1
34	Effects of CO ₂ and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy. RSC Advances, 2017, 7, 48925-48933.	1.7	70
35	Towards sustainable concrete. Nature Materials, 2017, 16, 698-699.	13.3	683
36	XPS Study on the Stability and Transformation of Hydrate and Carbonate Phases within MgO Systems. Materials, 2017, 10, 75.	1.3	53

PAULO J M MONTEIRO

#	Article	IF	CITATIONS
37	Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate. Materials, 2017, 10, 131.	1.3	18
38	Relationship between Degree of Deformation in Quartz and Silica Dissolution for the Development of Alkali-Silica Reaction in Concrete. Materials, 2017, 10, 1022.	1.3	10
39	Ca <i>L</i> _{2,3} -edge near edge X-ray absorption fine structure of tricalcium aluminate, gypsum, and calcium (sulfo)aluminate hydrates. American Mineralogist, 2017, 102, 900-908.	0.9	21
40	Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress. Materials, 2016, 9, 252.	1.3	45
41	Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution. Materials, 2016, 9, 401.	1.3	37
42	A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C3A and Their Hydration Products in the Presence of Gypsum. Materials, 2016, 9, 745.	1.3	8
43	In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration. Materials, 2016, 9, 976.	1.3	17
44	Readily implementable techniques can cut annual CO ₂ emissions from the production of concrete by over 20%. Environmental Research Letters, 2016, 11, 074029.	2.2	278
45	Effect of superplasticisers on the hydration process, products and microstructure of tricalcium aluminate paste in the presence of gypsum. Advances in Cement Research, 2016, 28, 298-309.	0.7	3
46	Comparison indices for design and proportioning of concrete mixtures taking environmental impacts into account. Cement and Concrete Composites, 2016, 68, 131-143.	4.6	54
47	Developments in TEM Nanotomography of Calcium Silicate Hydrate. Journal of the American Ceramic Society, 2015, 98, 2307-2312.	1.9	15
48	Soft Xâ€ray Ptychographic Imaging and Morphological Quantification of Calcium Silicate Hydrates (C–S–H). Journal of the American Ceramic Society, 2015, 98, 4090-4095.	1.9	38
49	Soft Xâ€ray Spectromicroscopic Investigation of Synthetic Câ€Sâ€H and C 3 S Hydration Products. Journal of the American Ceramic Society, 2015, 98, 2914-2920.	1.9	19
50	CaCl ₂ -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with ²⁹ Si MAS NMR. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	13
51	Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environmental Research Letters, 2015, 10, 114017.	2.2	49
52	Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste. Cement and Concrete Research, 2015, 77, 36-46.	4.6	42
53	Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 2015, 87, 100-112.	3.2	153
54	A combined synchrotron radiation micro computed tomography and micro X-ray diffraction study on deleterious alkali-silica reaction. Journal of Materials Science, 2015, 50, 7985-7997.	1.7	15

Paulo J M Monteiro

#	Article	IF	CITATIONS
55	Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 2015, 56, 59-72.	4.6	324
56	X-ray spectromicroscopic study of interactions between NaCl and calcium silicate hydrates. Magazine of Concrete Research, 2014, 66, 141-149.	0.9	20
57	First-principles elasticity of monocarboaluminate hydrates. American Mineralogist, 2014, 99, 1360-1368.	0.9	21
58	Calcium Sulfoaluminate Sodalite (<scp><scp>Ca₄Al₆O₁₂SO₄</scp></scp>) Crystal Structure Evaluation and Bulk Modulus Determination. Journal of the American Ceramic Society, 2014, 97, 892-898.	1.9	36
59	Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix. Cement and Concrete Composites, 2014, 48, 9-18.	4.6	23
60	A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, 2014, 67, 14-19.	3.2	102
61	Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review. International Journal of Concrete Structures and Materials, 2013, 7, 95-110.	1.4	51
62	Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist, 2013, 98, 1669-1687.	0.9	133
63	Material and Elastic Properties of <scp><scp>Al</scp></scp> â€Tobermorite in Ancient Roman Seawater Concrete. Journal of the American Ceramic Society, 2013, 96, 2598-2606.	1.9	106
64	Molecular Dynamics Study of Water Molecules in Interlayer of 14 Ã Tobermorite. Journal of Advanced Concrete Technology, 2013, 11, 180-188.	0.8	12
65	A mathematical model of fluid and gas flow in nanoporous media. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20309-20313.	3.3	98
66	Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales. American Mineralogist, 2012, 97, 480-483.	0.9	66
67	Compositional Evolution of Calcium Silicate Hydrate (<scp><scp>C–S–H</scp></scp>) Structures by Total <scp>X</scp> â€Ray Scattering. Journal of the American Ceramic Society, 2012, 95, 793-798.	1.9	86
68	Experimental determination of bulk modulus of 14Ã tobermorite using high pressure synchrotron X-ray diffraction. Cement and Concrete Research, 2012, 42, 397-403.	4.6	67
69	Elastic Properties of Tricalcium Aluminate from Highâ€Pressure Experiments and Firstâ€Principles Calculations. Journal of the American Ceramic Society, 2012, 95, 2972-2978.	1.9	32
70	Use of Recyclable Materials in Sustainable Civil Engineering Applications. Advances in Civil Engineering, 2011, 2011, 1-2.	0.4	8
71	Pressure induced reactions amongst calcium aluminate hydrate phases. Cement and Concrete Research, 2011, 41, 571-578.	4.6	37
72	Effect of Lithium Nitrate on the Alkali-Silica Reaction Gel. Journal of the American Ceramic Society, 2008, 91, 3370-3374.	1.9	32

PAULO J M MONTEIRO

#	Article	IF	CITATIONS
73	Early Formation of Ettringite in Tricalcium Aluminate?Calcium Hydroxide?Gypsum Dispersions. Journal of the American Ceramic Society, 2007, 90, 614-617.	1.9	15
74	Damage characterization of concrete panels due to impact loading by motionless X-ray laminography. Journal of Materials Science, 2007, 42, 3280-3285.	1.7	6
75	Scaling and saturation laws for the expansion of concrete exposed to sulfate attack. Proceedings of the United States of America, 2006, 103, 11467-11472.	3.3	25
76	Xâ€ray Diffraction Investigations of Microstructure of Calcium Hydroxide Crystallites in the Interfacial Transition Zone of Concrete. Journal of the American Ceramic Society, 2003, 86, 2162-2166.	1.9	20
77	The Alkali-Silica Reaction in a Monolithic Opal. Journal of the American Ceramic Society, 1994, 77, 2849-2856.	1.9	9
78	Effect of the Transition Zone on the Bulk Modulus of Concrete. Materials Research Society Symposia Proceedings, 1994, 370, 413.	0.1	8