
Daniel A Heller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treating metastatic cancer with nanotechnology. Nature Reviews Cancer, 2012, 12, 39-50.	12.8	1,023
2	Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 2004, 4, 86-92.	13.3	889
3	Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors. Advanced Materials, 2005, 17, 2793-2799.	11.1	502
4	Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles. ACS Nano, 2009, 3, 149-158.	7.3	491
5	Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes. Science, 2006, 311, 508-511.	6.0	480
6	Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 2021, 6, 351-370.	23.3	388
7	A vector-free microfluidic platform for intracellular delivery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2082-2087.	3.3	386
8	Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3 Cells. Nano Letters, 2008, 8, 1577-1585.	4.5	305
9	Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotechnology, 2009, 4, 114-120.	15.6	284
10	Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 6905-6909.	1.2	283
11	Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nature Nanotechnology, 2013, 8, 959-968.	15.6	282
12	Multimodal Biomedical Imaging with Asymmetric Single-Walled Carbon Nanotube/Iron Oxide Nanoparticle Complexes. Nano Letters, 2007, 7, 861-867.	4.5	268
13	The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nature Chemistry, 2009, 1, 473-481.	6.6	238
14	Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nature Nanotechnology, 2010, 5, 302-309.	15.6	228
15	Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 14567-14573.	6.6	226
16	Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell, 2020, 181, 424-441.e21.	13.5	216
17	Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy. Nano Letters, 2004, 4, 543-550.	4.5	191
18	Single Molecule Detection of Nitric Oxide Enabled by d(AT) ₁₅ DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 567-581.	6.6	177

#	Article	IF	CITATIONS
19	A carbon nanotube reporter of microRNA hybridization events in vivo. Nature Biomedical Engineering, 2017, 1, .	11.6	160
20	P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Science Translational Medicine, 2016, 8, 345ra87.	5.8	152
21	Nearâ€Infrared Fluorescent Sensors based on Singleâ€Walled Carbon Nanotubes for Life Sciences Applications. ChemSusChem, 2011, 4, 848-863.	3.6	146
22	Quantitative self-assembly prediction yields targeted nanomedicines. Nature Materials, 2018, 17, 361-368.	13.3	141
23	Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Applied Physics A: Materials Science and Processing, 2004, 78, 1147-1155.	1.1	139
24	Mesoscale Nanoparticles Selectively Target the Renal Proximal Tubule Epithelium. Nano Letters, 2015, 15, 2358-2364.	4.5	128
25	Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nature Chemistry, 2010, 2, 929-936.	6.6	126
26	Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Science Advances, 2018, 4, eaaq1090.	4.7	121
27	Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8544-8549.	3.3	114
28	Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging. Scientific Reports, 2015, 5, 14167.	1.6	114
29	Sonication-induced changes in chiral distribution: A complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon, 2005, 43, 651-653.	5.4	104
30	Redox-active nanomaterials for nanomedicine applications. Nanoscale, 2017, 9, 15226-15251.	2.8	104
31	Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting. Advanced Energy Materials, 2013, 3, 881-893.	10.2	99
32	Achieving Individual-Nanotube Dispersion at High Loading in Single-Walled Carbon Nanotube Composites. Advanced Materials, 2005, 17, 980-984.	11.1	92
33	A Luciferase/Singleâ€Walled Carbon Nanotube Conjugate for Nearâ€Infrared Fluorescent Detection of Cellular ATP. Angewandte Chemie - International Edition, 2010, 49, 1456-1459.	7.2	90
34	Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nature Communications, 2017, 8, 14292.	5.8	90
35	Selective Nanoparticle Targeting of the Renal Tubules. Hypertension, 2018, 71, 87-94.	1.3	85
36	A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux. ACS Nano, 2017, 11, 10689-10703.	7.3	84

#	Article	IF	CITATIONS
37	Stochastic Analysis of Stepwise Fluorescence Quenching Reactions on Single-Walled Carbon Nanotubes: Single Molecule Sensors. Nano Letters, 2008, 8, 4299-4304.	4.5	82
38	An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Science Translational Medicine, 2018, 10, .	5.8	80
39	A Rapid, Direct, Quantitative, and Labelâ€Free Detector of Cardiac Biomarker Troponin T Using Nearâ€Infrared Fluorescent Singleâ€Walled Carbon Nanotube Sensors. Advanced Healthcare Materials, 2014, 3, 412-423.	3.9	76
40	Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Materials, 2010, 9, 833-839.	13.3	75
41	Modular â€~Clickâ€inâ€Emulsion' Boneâ€Targeted Nanogels. Advanced Materials, 2013, 25, 1449-1454.	11.1	73
42	Cell Membrane Proteins Modulate the Carbon Nanotube Optical Bandgap <i>via</i> Surface Charge Accumulation. ACS Nano, 2016, 10, 499-506.	7.3	71
43	A Fluorescent Carbon Nanotube Sensor Detects the Metastatic Prostate Cancer Biomarker uPA. ACS Sensors, 2018, 3, 1838-1845.	4.0	71
44	Nanomedicines for kidney diseases. Kidney International, 2016, 90, 740-745.	2.6	70
45	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	15.6	69
46	HIV Detection via a Carbon Nanotube RNA Sensor. ACS Sensors, 2019, 4, 1236-1244.	4.0	68
47	Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nature Biomedical Engineering, 2022, 6, 267-275.	11.6	65
48	Divalent Ion and Thermally Induced DNA Conformational Polymorphism on Single-walled Carbon Nanotubes. Macromolecules, 2007, 40, 6731-6739.	2.2	64
49	DNA–Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent. ACS Applied Materials & Interfaces, 2017, 9, 21397-21405.	4.0	62
50	Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces. Biomaterials, 2005, 26, 883-889.	5.7	61
51	Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney International, 2020, 98, 76-87.	2.6	56
52	Synthetic molecular recognition nanosensor paint for microalbuminuria. Nature Communications, 2019, 10, 3605.	5.8	54
53	A Carbon Nanotube Optical Sensor Reports Nuclear Entry <i>via</i> a Noncanonical Pathway. ACS Nano, 2017, 11, 3875-3882.	7.3	52
54	Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS ONE, 2020, 15, e0226791.	1.1	52

#	Article	IF	CITATIONS
55	Carbon nanotube population analysis from Raman and photoluminescence intensities. Applied Physics Letters, 2006, 88, 023109.	1.5	51
56	Length-Dependent Optical Effects in Single Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2008, 112, 6211-6213.	1.2	51
57	Helical Polycarbodiimide Cloaking of Carbon Nanotubes Enables Inter-Nanotube Exciton Energy Transfer Modulation. Journal of the American Chemical Society, 2014, 136, 15545-15550.	6.6	48
58	A perception-based nanosensor platform to detect cancer biomarkers. Science Advances, 2021, 7, eabj0852.	4.7	43
59	Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon, 2016, 97, 99-109.	5.4	41
60	Color-blind fluorescence detection for four-color DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5346-5351.	3.3	39
61	Measuring Uptake Dynamics of Multiple Identifiable Carbon Nanotube Species via High-Speed Confocal Raman Imaging of Live Cells. Nano Letters, 2012, 12, 6170-6174.	4.5	37
62	Role of Adsorbed Surfactant in the Reaction of Aryl Diazonium Salts with Single-Walled Carbon Nanotubes. Langmuir, 2012, 28, 1309-1321.	1.6	37
63	Lipidâ€Modified Aminoglycoside Derivatives for In Vivo siRNA Delivery. Advanced Materials, 2013, 25, 4641-4645.	11.1	36
64	Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183, 114172.	6.6	34
65	Advances in the clinical translation of nanotechnology. Current Opinion in Biotechnology, 2017, 46, 66-73.	3.3	30
66	An <i>in Vivo</i> Nanosensor Measures Compartmental Doxorubicin Exposure. Nano Letters, 2019, 19, 4343-4354.	4.5	30
67	Review—Progress toward Applications of Carbon Nanotube Photoluminescence. ECS Journal of Solid State Science and Technology, 2017, 6, M3075-M3077.	0.9	27
68	Kidney-Targeted Renalase Agonist Prevents Cisplatin-Induced Chronic Kidney Disease by Inhibiting Regulated Necrosis and Inflammation. Journal of the American Society of Nephrology: JASN, 2022, 33, 342-356.	3.0	26
69	Polymer cloaking modulates the carbon nanotube protein corona and delivery into cancer cells. Journal of Materials Chemistry B, 2017, 5, 6637-6644.	2.9	25
70	Nanoreporter of an Enzymatic Suicide Inactivation Pathway. Nano Letters, 2020, 20, 7819-7827.	4.5	25
71	Glutathione-S-transferase Fusion Protein Nanosensor. Nano Letters, 2020, 20, 7287-7295.	4.5	25
72	Harnessing nanotechnology to expand the toolbox of chemical biology. Nature Chemical Biology, 2021, 17, 129-137	3.9	24

#	Article	IF	CITATIONS
73	Single-Chirality Near-Infrared Carbon Nanotube Sub-Cellular Imaging and FRET Probes. Nano Letters, 2021, 21, 6441-6448.	4.5	23
74	Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. International Journal of Nanomedicine, 2014, 9, 4245.	3.3	21
75	Control of Carbon Nanotube Solvatochromic Response to Chemotherapeutic Agents. ACS Applied Materials & Interfaces, 2017, 9, 37947-37953.	4.0	21
76	Single Nanotube Spectral Imaging To Determine Molar Concentrations of Isolated Carbon Nanotube Species. Analytical Chemistry, 2017, 89, 1073-1077.	3.2	20
77	Tumor-targeted nanoparticles improve the therapeutic index of BCL2 and MCL1 dual inhibition. Blood, 2021, 137, 2057-2069.	0.6	17
78	The Chemistry of Single-Walled Nanotubes. MRS Bulletin, 2009, 34, 950-961.	1.7	16
79	The IFNÎ ³ -PDL1 Pathway Enhances CD8T-DCT Interaction to Promote Hypertension. Circulation Research, 2022, 130, 1550-1564.	2.0	15
80	Electrostatic Screening Modulates Analyte Binding and Emission of Carbon Nanotubes. Journal of Physical Chemistry C, 2018, 122, 10592-10599.	1.5	14
81	En route to single-step, two-phase purification of carbon nanotubes facilitated by high-throughput spectroscopy. Scientific Reports, 2021, 11, 10618.	1.6	14
82	Optical Nanosensor for Intracellular and Intracranial Detection of Amyloid-Beta. ACS Nano, 2022, 16, 7269-7283.	7.3	14
83	Kidney-Targeted Redox Scavenger Therapy Prevents Cisplatin-Induced Acute Kidney Injury. Frontiers in Pharmacology, 2021, 12, 790913.	1.6	13
84	Renal proximal tubular NEMO plays a critical role in ischemic acute kidney injury. JCI Insight, 2020, 5, .	2.3	12
85	Electroporation-induced changes in tumor vasculature and microenvironment can promote the delivery and increase the efficacy of sorafenib nanoparticles. Bioelectrochemistry, 2019, 130, 107328.	2.4	10
86	Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles. ACS Nano, 2022, 16, 3092-3104.	7.3	8
87	Dynamic manipulation of modes in an optical waveguide using dielectrophoresis. Electrophoresis, 2012, 33, 2075-2085.	1.3	7
88	Optical Voltammetry of Polymer-Encapsulated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 24200-24208.	1.5	7
89	Modulating Single Walled Carbon Nanotube Fluorescence in Response to Specific Molecular Adsorption. AIP Conference Proceedings, 2005, , .	0.3	3
90	Can Fish and Cell Phones Teach Us about Our Health?. ACS Sensors, 2019, 4, 2566-2570.	4.0	2

#	Article	IF	CITATIONS
91	Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. , 2014, , .		1
92	Nanotargeting to the kidney. , 2022, , 439-449.		1
93	Near Infrared Spectral Imaging of Carbon Nanotubes for Biomedicine. , 2020, , 103-132.		1
94	Nanocarbons through the Artist's Lens. ECS Meeting Abstracts, 2019, MA2019-01, 747-747.	0.0	1
95	Emerging technologies in cancer detection. , 2022, , 353-392.		1
96	(Invited) Developing Optical Nanosensors for the Early Detection of Gynecologic Cancers. ECS Meeting Abstracts, 2022, MA2022-01, 689-689.	0.0	1
97	Drug Delivery: Lipid-Modified Aminoglycoside Derivatives for In Vivo siRNA Delivery (Adv. Mater.) Tj ETQq1 1 0.784	1314 rgBT 11.1	/Overlock 1
98	Developing Ovarian Cancer Sensors Using Molecular Perceptron. ECS Meeting Abstracts, 2021, MA2021-01, 538-538.	0.0	0
99	Development of In Vivo Nanosensors Using Organic Color Centers. ECS Meeting Abstracts, 2021, MA2021-01, 531-531.	0.0	0
100	(Invited) Organic Color Center Photoluminescence Modulation for Biomedical Applications. ECS Meeting Abstracts, 2021, MA2021-01, 560-560.	0.0	0
101	(Invited) Machine Learning for DNA/SWCNT Based Molecular Perceptron: Finding Sequences and Training Sensor Arrays. ECS Meeting Abstracts, 2021, MA2021-01, 567-567.	0.0	0
102	Preclinical Imaging and Spectroscopy in the NIR-II Window with Indocyanine Green (ICG) and Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2021, MA2021-01, 537-537.	0.0	0
103	Development of Single-Walled Carbon Nanotube-Based Optical Sensors Via Data Analytics. ECS Meeting Abstracts, 2021, MA2021-01, 523-523.	0.0	0
104	(Invited) Optical Characterization of Nanomaterial By Means of Hyperspectral Global Imaging. ECS Meeting Abstracts, 2021, MA2021-01, 673-673.	0.0	0
105	Organic Color Center Platform for Cancer Diagnosis. ECS Meeting Abstracts, 2021, MA2021-01, 562-562.	0.0	0
106	Non-Covalent Coatings on Carbon Nanotubes Mediate Photosensitizer Interactions. ACS Applied Materials & Interfaces, 2021, 13, 51343-51350.	4.0	0
107	Imaging and Spectroscopy of Carbon Nanotube Optical Reporters to Probe Biological Environments. ECS Meeting Abstracts, 2016, , .	0.0	0
108	Photoluminescent Carbon Nanotubes Interrogate the Permeability of Multicellular Tumor Spheroids. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
109	Carbon Nanotube Photoluminescence Modulation for Bioanalytical Measurements. ECS Meeting Abstracts, 2016, , .	0.0	0
110	Applying the Ionic Field-Effect Photoluminescence of Semiconducting Carbon Nanotubes for Circuit-Free Electroanalytics. ECS Meeting Abstracts, 2016, , .	0.0	0
111	Single-Walled Carbon Nanotubes for the Quantification of Biomarkers in Biofluids. ECS Meeting Abstracts, 2016, , .	0.0	Ο
112	Biomarker Detection By Single-Walled Carbon Nanotube Optical Bandgap Modulation. ECS Meeting Abstracts, 2016, , .	0.0	0
113	Examining the Sub-Cellular Localization of Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2016, , .	0.0	0
114	Non-Destructive Detection of Metabolites Using Single Walled Carbon Nanotubes. ECS Meeting Abstracts, 2016, , .	0.0	0
115	Sub-Cellular Localization of Photoluminescent Single-Walled Carbon Nanotubes in Human Cancer Cells. ECS Meeting Abstracts, 2016, , .	0.0	0
116	Carbon Nanotube Photoluminescence for Bioelectroanalytical Measurements. ECS Meeting Abstracts, 2016, , .	0.0	0
117	(Invited) Cell Membrane Proteins Modulate the Carbon Nanotube Optical Bandgap Via Surface Charge Accumulation. ECS Meeting Abstracts, 2016, , .	0.0	0
118	(Invited) Developments in Modulating Carbon Nanotube Photoluminescence. ECS Meeting Abstracts, 2017, , .	0.0	0
119	Toward Single-Color Carbon Nanotube Fluorescence Microscopy. ECS Meeting Abstracts, 2017, , .	0.0	0
120	Cylindrical Graphene Nanomaterials for Disease Assessment and Drug Development. ECS Meeting Abstracts, 2017, , .	0.0	0
121	Carbon Nanotube-Based Bioanalytical Sensors. ECS Meeting Abstracts, 2017, , .	0.0	0
122	Cellular Targeting of Carbon Nanotubes By Helical Polymers. ECS Meeting Abstracts, 2017, , .	0.0	0
123	Single-Walled Carbon Nanotubes for the Quantification of Active Chemotherapy Drugs. ECS Meeting Abstracts, 2017, , .	0.0	0
124	Experimental and Computational Approaches to Explore the the Mechanisms of Carbon Nanotube Biosensing. ECS Meeting Abstracts, 2017, , .	0.0	0
125	(Invited) Carbon Nanotube Photoluminescence Spectroscopy for Applications in Cancer Research. ECS Meeting Abstracts, 2018, , .	0.0	0
126	Carbon Nanotube-Based Sensors for Early Cancer Detection. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
127	Helical Polycarbodiimide-Cloaked Carbon Nanotubes for Biomedical Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
128	Progress Towards Single-Walled Carbon Nanotube Applications in Biomedicine and the Exoneration of Toxicity. ECS Meeting Abstracts, 2019, , .	0.0	0
129	(Invited) Carbon Nanotube Photoluminescence Solvatochromism in Biomedicine: Spectroscopy, Imaging, and Modulation. ECS Meeting Abstracts, 2019, , .	0.0	0
130	Protein Biomarker Detection with Carbon Nanotube-Based Sensors. ECS Meeting Abstracts, 2019, , .	0.0	0
131	Developing Ovarian Cancer Sensors Using Molecular Perceptron. ECS Meeting Abstracts, 2020, MA2020-01, 645-645.	0.0	0
132	Preclinical Imaging and Spectroscopy in the NIR-II Window with Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-01, 711-711.	0.0	0
133	(Invited) Optical Characterization of Nanomaterial By Means of Hyperspectral Global Imaging. ECS Meeting Abstracts, 2020, MA2020-01, 955-955.	0.0	Ο
134	(Invited) In Vivo Analyte Detection Via Single-Walled Carbon Nanotube Near-Infrared Fluorescence. ECS Meeting Abstracts, 2020, MA2020-01, 638-638.	0.0	0
135	(Invited) Development of Single-Walled Carbon Nanotube-Based Optical Sensors Via Data Analytics. ECS Meeting Abstracts, 2020, MA2020-01, 694-694.	0.0	Ο
136	Machine Learning for Molecular Perceptron: A Perception-Based Sensing System. ECS Meeting Abstracts, 2020, MA2020-01, 632-632.	0.0	0
137	Organic Color Center Photoluminescence Modulation for Biomedical Applications. ECS Meeting Abstracts, 2020, MA2020-01, 647-647.	0.0	Ο
138	Real-Time, In Vivo Monitoring of Pharmacodynamics in Solid Tumors Using Organic Color Centers. ECS Meeting Abstracts, 2020, MA2020-02, 3421-3421.	0.0	0
139	Welcome Remarks - M03: In Vivo Nano Biosensors. ECS Meeting Abstracts, 2020, MA2020-02, Open-Open.	0.0	Ο
140	Detecting Alzheimer's Disease Biomarkers in-Vivo with Near-Infrared Optical Nanosensors. ECS Meeting Abstracts, 2020, MA2020-02, 3410-3410.	0.0	0
141	Non-Invasive Cytokine Detection Via Organic Color Center Patch. ECS Meeting Abstracts, 2020, MA2020-02, 3424-3424.	0.0	Ο
142	Carbon Nanotube and Organic Color Center Solvatochromism in Biomedicine. ECS Meeting Abstracts, 2020, MA2020-02, 3409-3409.	0.0	0
143	(Invited) In Vivo Analyte Detection Via Single-Walled Carbon Nanotube Near-Infrared Fluorescence. ECS Meeting Abstracts, 2020, MA2020-02, 3417-3417.	0.0	0
144	In Vivo Biocompatibility of Single Walled Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-02, 3415-3415.	0.0	0

#	Article	IF	CITATIONS
145	Nanosensor Array Platform to Capture Whole Disease Fingerprints. ECS Meeting Abstracts, 2020, MA2020-02, 3398-3398.	0.0	0
146	Drug-Eluting Rubber Bands for Tissue Ligation. ACS Applied Materials & Interfaces, 2022, 14, 27675-27685.	4.0	0
147	Machine Learning for Carbon Nanotube Optical Sensors. ECS Meeting Abstracts, 2022, MA2022-01, 714-714.	0.0	0
148	Carbon Nanotube Quantum Defect Photoluminescence Modulation for Biosensors. ECS Meeting Abstracts, 2022, MA2022-01, 686-686.	0.0	0
149	(Invited) Advances in Swir In Vivo Fluorescence Imaging Instrumentation. ECS Meeting Abstracts, 2022, MA2022-01, 676-676.	0.0	0
150	Organic Color Center-based Optical Nanosensors to Monitor Lysosomal Activity. ECS Meeting Abstracts, 2022, MA2022-01, 693-693.	0.0	0
151	(Invited) Machine Learning for DNA/SWCNT Based Molecular Perceptron: Finding Sequences and Training Sensor Arrays. ECS Meeting Abstracts, 2022, MA2022-01, 687-687.	0.0	0