Lei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681252/publications.pdf

Version: 2024-02-01

257450 223800 3,021 45 24 46 citations h-index g-index papers 53 53 53 3285 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A one-pot and two-stage Baeyer–Villiger reaction using 2,2′-diperoxyphenic acid under biomolecule-compatible conditions. Green Chemistry, 2022, 24, 2232-2239.	9.0	4
2	Synthetic routes to bicyclo $[1.1.1]$ pentylamines: booming toolkits for drug design. Organic Chemistry Frontiers, 2022, 9, 3591-3597.	4. 5	10
3	Siteâ€ S pecific C(sp 3)–H Aminations of Imidates and Amidines Enabled by Covalently Tethered Distonic Radical Anions. Angewandte Chemie - International Edition, 2020, 59, 20682-20690.	13.8	11
4	Siteâ€Specific C(sp 3)–H Aminations of Imidates and Amidines Enabled by Covalently Tethered Distonic Radical Anions. Angewandte Chemie, 2020, 132, 20863-20871.	2.0	2
5	Reactions between Diazo Compounds and Hypervalent Iodine(III) Reagents. Angewandte Chemie - International Edition, 2020, 59, 12282-12292.	13.8	35
6	Reactions between Diazo Compounds and Hypervalent Iodine(III) Reagents. Angewandte Chemie, 2020, 132, 12378-12388.	2.0	4
7	Trichloroacetonitrile as an efficient activating agent for the <i>ipso </i> -hydroxylation of arylboronic acids to phenolic compounds. Organic and Biomolecular Chemistry, 2019, 17, 7558-7563.	2.8	13
8	B(C ₆ F ₅) ₃ â€Catalyzed Reduction of Cyclic <i>N</i> àê€Sulfonyl Ketimines. European Journal of Organic Chemistry, 2019, 2019, 6550-6556.	2.4	7
9	Metalâ€Free Geminal Difunctionalization of Diazocarbonyl Compounds: A Oneâ€Pot Multicomponent Strategy for the Construction of α,βâ€Diamino Carbonyl Derivatives. Chemistry - A European Journal, 2018, 24, 4805-4809.	3.3	13
10	Sulfonamide-Directed Chemo- and Site-Selective Oxidative Halogenation/Amination Using Halogenating Reagents Generated in Situ from Cyclic Diacyl Peroxides. Journal of Organic Chemistry, 2018, 83, 3305-3315.	3.2	22
11	Chiral Ionâ€Pair Organocatalystâ€Promoted Efficient Enantioâ€selective Reduction of αâ€Hydroxy Ketones. Advanced Synthesis and Catalysis, 2018, 360, 1926-1931.	4.3	2
12	Tandem Radical Cyclization for the Construction of Difluoroâ€Containing Oxindoles and Quinolineâ€2,4â€diones. Chemistry - an Asian Journal, 2018, 13, 636-640.	3. 3	24
13	Visible-Light-Enhanced Ring Opening of Cycloalkanols Enabled by Brønsted Base-Tethered Acyloxy Radical Induced Hydrogen Atom Transfer-Electron Transfer. Organic Letters, 2018, 20, 1228-1231.	4.6	60
14	Asymmetric hydrogenolysis of racemic 3-substitued-3-hydroxy-isoindolin-1-ones employing SPINOL-derived chiral phosphoric acid. Tetrahedron Letters, 2018, 59, 1592-1595.	1.4	12
15	Two catalytic protocols for Achmatowicz rearrangement using cyclic diacyl peroxides as oxidants. Organic and Biomolecular Chemistry, 2018, 16, 5566-5569.	2.8	5
16	Metal- and additive-free oxygen-atom transfer reaction: an efficient and chemoselective oxidation of sulfides to sulfoxides with cyclic diacyl peroxides. Organic and Biomolecular Chemistry, 2017, 15, 2647-2654.	2.8	34
17	B(C ₆ F ₅) ₃ â€Catalyzed Deoxygenation of Sulfoxides and Amine <i>N</i> â€Oxides with Hydrosilanes. European Journal of Organic Chemistry, 2017, 2017, 3427-3430.	2.4	18
18	Rhodium(II)/Chiral Phosphoric Acidâ€Cocatalyzed Enantioselective O–H Bond Insertion of αâ€Diazo Esters. Advanced Synthesis and Catalysis, 2017, 359, 2754-2761.	4.3	54

#	Article	IF	CITATIONS
19	Recent Advances in Cyclic Diacyl Peroxides: Reactivity and Selectivity Enhancement Brought by the Cyclic Structure. Synthesis, 2017, 49, 3357-3365.	2.3	27
20	B(C ₆ F ₅) ₃ -Promoted hydrogenations of N-heterocycles with ammonia borane. Chemical Communications, 2017, 53, 9262-9264.	4.1	61
21	Periodic Mesoporous Organosilica with a Basic Ureaâ€Derived Framework for Enhanced Carbon Dioxide Capture and Conversion Under Mild Conditions. ChemSusChem, 2017, 10, 1110-1119.	6.8	80
22	The crystal phase transformation of Ag $<$ sub $>$ 2 $<$ /sub $>$ WO $<$ sub $>$ 4 $<$ /sub $>$ through loading onto g-C $<$ sub $>$ 3 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ sheets with enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 96861-96869.	3.6	18
23	Direct α-acyloxylation of organic sulfides with the hypervalent (diacyloxyiodo)benzene/tetra-n-butylammonium bromide (TBAB) reagent combination. RSC Advances, 2016, 6, 27983-27987.	3.6	12
24	DDQâ€mediated Direct C(sp ³)H Cyanation of Benzyl Ethers and 1,3â€Diarylpropenes under Solvent―and Metalâ€free Conditions. Advanced Synthesis and Catalysis, 2015, 357, 2453-2456.	4.3	24
25	Cleavage of C–N bonds in guanidine derivatives and its relevance toÂefficient C–N bonds formation. Tetrahedron, 2015, 71, 1684-1693.	1.9	11
26	Progress and developments in the turbo Grignard reagent i-PrMgCl·LiCl: a ten-year journey. Chemical Communications, 2015, 51, 6884-6900.	4.1	129
27	Transition-metal-free cross-coupling of thioethers with aryl(cyano)iodonium triflates: a facile and efficient method for the one-pot synthesis of thiocyanates. Chemical Communications, 2015, 51, 7180-7183.	4.1	57
28	Highly Enantioselective SPINOLâ€Derived Phosphoric Acid Catalyzed Transfer Hydrogenation of Diverse C=Nâ€Containing Heterocycles. European Journal of Organic Chemistry, 2015, 2015, 3344-3351.	2.4	46
29	[3 + 2] Cycloadditions of Azides with Arynes via Photolysis of Phthaloyl Peroxide Derivatives. Journal of Organic Chemistry, 2015, 80, 5928-5933.	3.2	32
30	Promising Combination for Asymmetric Organocatalysis: Brønsted Acidâ€Assisted Chiral Phosphoric Acid Catalysis. ChemCatChem, 2014, 6, 3309-3311.	3.7	18
31	Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chemical Society Reviews, 2012, 41, 7687.	38.1	966
32	Leaving Group Dependence of the Rates of Halogen–Magnesium Exchange Reactions. Organic Letters, 2012, 14, 2602-2605.	4.6	27
33	Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation. Journal of the American Chemical Society, 2012, 134, 2442-2448.	13.7	247
34	Enantioselective Pd-catalyzed hydrogenation of enesulfonamides. Chemical Communications, 2011, 47, 5052.	4.1	47
35	Structure–Reactivity Relationships in Negishi Crossâ€Coupling Reactions. Chemistry - A European Journal, 2010, 16, 248-253.	3.3	36
36	Kinetics of Bromineâ^'Magnesium Exchange Reactions in Substituted Bromobenzenes. Journal of Organic Chemistry, 2009, 74, 2760-2764.	3.2	63

#	Article	IF	CITATIONS
37	Kinetics of Bromineâ^'Magnesium Exchange Reactions in Heteroaryl Bromides. Organic Letters, 2009, 11, 3502-3505.	4.6	53
38	Relative Rates of Bromine–Magnesium Exchange Reactions in Substituted Bromobenzene Derivatives. Angewandte Chemie - International Edition, 2008, 47, 202-204.	13.8	48
39	Palladiumâ€Catalyzed/Lewis Acidâ€Promoted Alkene Dimerization and Crossâ€Coupling with Alcohols <i>via</i> CH Bond Activation. Advanced Synthesis and Catalysis, 2008, 350, 552-556.	4.3	53
40	A Direct CC Crossâ€Coupling of Alcohols at the βâ€Position with Aldehydes under Coâ€Promotion of Tris(triphenylphosphine)rhodium Chloride/Boron Trifuoride Etherate. Advanced Synthesis and Catalysis, 2008, 350, 2189-2193.	4.3	5
41	A Reaction for sp3â^'sp3Câ^'C Bond Formation via Cooperation of Lewis Acid-Promoted/Rh-Catalyzed Câ^'H Bond Activation. Journal of the American Chemical Society, 2005, 127, 10836-10837.	13.7	159
42	Microwave-Promoted Three-Component Coupling of Aldehyde, Alkyne, and Amine via Câ^'H Activation Catalyzed by Copper in Water. Organic Letters, 2004, 6, 1001-1003.	4.6	288
43	First Synthesis of (+)â€2,14â€Deoxyalatol from αâ€Santonin. Chinese Journal of Chemistry, 2004, 22, 377-383.	4.9	3
44	Rapid and Efficient Microwave-Assisted Amination of Electron-Rich Aryl Halides without a Transition-Metal Catalyst. Organic Letters, 2003, 5, 3515-3517.	4.6	132
45	A novel AlEt3-promoted tandem reductive rearrangement of 1-benzyloxy-2,3-epoxides: new route to 2-quaternary 1,3-diol unitsElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b209948a/. Chemical Communications, 2003, , 798-799.	4.1	16