Yun-Fei Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681246/publications.pdf

Version: 2024-02-01

		840776	839539
19	317	11	18
papers	citations	h-index	g-index
19	19	19	289
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C. Journal of Materials Science and Technology, 2019, 35, 1607-1617.	10.7	59
2	Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF. Journal of Materials Science and Technology, 2021, 83, 196-207.	10.7	38
3	Effects of Different Mechanical Surface Enhancement Techniques on Surface Integrity and Fatigue Properties of Ti-6Al-4V: A Review. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 445-469.	12.3	35
4	Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium. International Journal of Fatigue, 2021, 146, 106142.	5.7	32
5	Comparison between single loading–unloading indentation and continuous stiffness indentation. RSC Advances, 2017, 7, 35655-35665.	3.6	25
6	Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. Materials Science & Droperties, Microstructure and Processing, 2017, 704, 493-502.	5. 6	22
7	Anisotropic fatigue behavior of human enamel characterized by multi-cycling nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 163-168.	3.1	21
8	Gradient Elastic–Plastic Properties of Expanded Austenite Layer in 316L Stainless Steel. Acta Metallurgica Sinica (English Letters), 2018, 31, 831-841.	2.9	19
9	Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique. Corrosion Science, 2019, 157, 256-267.	6.6	14
10	Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation. Scientific Reports, 2018, 8, 6199.	3.3	13
11	Fatigue-induced evolution of nanograins and residual stress in the nanostructured surface layer of Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138205.	5.6	11
12	Microstructural Evolution, Mechanical Properties and Thermal Stability of Gradient Structured Pure Nickel. Acta Metallurgica Sinica (English Letters), 2019, 32, 951-960.	2.9	9
13	Effect of ultrasonic surface deep rolling combined with oxygen boost diffusion treatment on fatigue properties of pure titanium. Scientific Reports, 2021, 11, 17840.	3.3	5
14	Rate-dependent plastic buckling of a core–shell wire. Journal Physics D: Applied Physics, 2019, 52, 435502.	2.8	4
15	A finite element simulation on fully coupled diffusion, stress and chemical reaction. Mechanics of Materials, 2022, 166, 104217.	3.2	4
16	The effect of grain boundary structures on crack nucleation in nickel nanolaminated structure: A molecular dynamics study. Computational Materials Science, 2021, 186, 110019.	3.0	3
17	A modified analysis for thermal–mechanical properties of staggered structure in biomimetic materials. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 109-120.	3.1	2
18	Achieving High Strength-plasticity of Nanoscale Lamellar Grain Extracted from Gradient Lamellar Nickel. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	3.7	1

Yun-Fei Jia

#	Article	IF	CITATIONS
19	Differences in Deformation Behaviors Caused by Microband-Induced Plasticity of $[0\ 0\ 1]$ - and $[1\ 1\ 1]$ -Oriented Austenite Micro-Pillars. Metals, 2021, 11, 1179.	2.3	0