Frank Winnefeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681005/publications.pdf

Version: 2024-02-01

104 papers 13,234 citations

54 h-index 30087 103 g-index

105 all docs 105 docs citations

105 times ranked 5458 citing authors

#	Article	IF	CITATIONS
1	Advances in alternative cementitious binders. Cement and Concrete Research, 2011, 41, 1232-1243.	11.0	1,232
2	Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research, 2011, 41, 301-310.	11.0	720
3	Thermodynamic modelling of the hydration of Portland cement. Cement and Concrete Research, 2006, 36, 209-226.	11.0	665
4	Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling. Cement and Concrete Research, 2010, 40, 1239-1247.	11.0	602
5	Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cement and Concrete Research, 2007, 37, 483-491.	11.0	541
6	Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag â€" Part I: Effect of MgO. Cement and Concrete Research, 2011, 41, 955-963.	11.0	534
7	Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cement and Concrete Composites, 2007, 29, 251-262.	10.7	409
8	Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag â€" Part II: Effect of Al2O3. Cement and Concrete Research, 2012, 42, 74-83.	11.0	406
9	Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 2012, 42, 1389-1400.	11.0	387
10	Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. Journal of Colloid and Interface Science, 2008, 323, 301-312.	9.4	314
11	Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cement and Concrete Composites, 2015, 55, 374-382.	10.7	278
12	Hydration of alkali-activated slag: comparison with ordinary Portland cement. Advances in Cement Research, 2006, 18, 119-128.	1.6	256
13	Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts. Cement and Concrete Composites, 2009, 31, 153-162.	10.7	255
14	Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye'elimite. Journal of Thermal Analysis and Calorimetry, 2010, 101, 949-957.	3.6	250
15	Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cement and Concrete Research, 2017, 95, 205-216.	11.0	207
16	The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: Hydration mechanism and mortar properties. Cement and Concrete Composites, 2010, 32, 497-507.	10.7	204
17	Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research, 2008, 38, 983-992.	11.0	198
18	Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. Journal of Colloid and Interface Science, 2010, 347, 15-24.	9.4	198

#	Article	IF	CITATIONS
19	Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cement and Concrete Research, 2013, 52, 169-181.	11.0	193
20	Stability in the system CaO–Al2O3–H2O. Cement and Concrete Research, 2012, 42, 1621-1634.	11.0	192
21	Hydration of Portland cement with additions of calcium sulfoaluminates. Cement and Concrete Research, 2013, 43, 81-94.	11.0	190
22	The effect of viscosity modifying agents on mortar and concrete. Cement and Concrete Composites, 2007, 29, 341-349.	10.7	178
23	Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Construction and Building Materials, 2010, 24, 1086-1093.	7.2	172
24	Beneficial use of limestone filler with calcium sulphoaluminate cement. Construction and Building Materials, 2012, 26, 619-627.	7.2	165
25	Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study. Cement and Concrete Research, 2017, 93, 71-82.	11.0	145
26	Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux Et Constructions, 2018, 51 , 1 .	3.1	144
27	Influence of fly ash on the hydration of calcium sulfoaluminate cement. Cement and Concrete Research, 2017, 95, 152-163.	11.0	142
28	Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio. Journal of Thermal Analysis and Calorimetry, 2014, 115, 425-432.	3.6	137
29	Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio. Cement and Concrete Research, 2018, 108, 140-151.	11.0	135
30	Carbonation of calcium sulfoaluminate mortars. Cement and Concrete Composites, 2017, 80, 123-134.	10.7	134
31	Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	132
32	Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cement and Concrete Composites, 2015, 62, 204-211.	10.7	130
33	Alkali-Silica Reaction: the Influence of Calcium on Silica Dissolution and the Formation of Reaction Products. Journal of the American Ceramic Society, 2011, 94, 1243-1249.	3.8	129
34	Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders. Cement and Concrete Composites, 2011, 33, 551-561.	10.7	124
35	Hydration Degree of Alkaliâ€Activated Slags: A ²⁹ <scp><scp>Si</scp> NMR</scp> Study. Journal of the American Ceramic Society, 2011, 94, 4541-4547.	3.8	120
36	Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements. Cement and Concrete Research, 2019, 123, 105781.	11.0	120

#	Article	IF	Citations
37	The microstructure of dispersed and non-dispersed fresh cement pastes — New insight by cryo-microscopy. Cement and Concrete Research, 2008, 38, 522-529.	11.0	117
38	RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	117
39	Using gypsum to control hydration kinetics of CSA cements. Construction and Building Materials, 2017, 155, 154-163.	7.2	116
40	Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cement and Concrete Research, 2020, 135, 106116.	11.0	116
41	Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 2017, 241, 293-302.	4.4	111
42	Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1â^'xFex(OH)6]2(SO4)3·26H2O). Cement and Concrete Research, 2009, 39, 482-489.	11.0	107
43	Multi-method approach to study influence of superplasticizers on cement suspensions. Cement and Concrete Research, 2011, 41, 1058-1066.	11.0	103
44	Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	101
45	Chemical activation of hybrid binders based on siliceous fly ash and Portland cement. Cement and Concrete Composites, 2016, 66, 10-23.	10.7	99
46	Advances in understanding ye'elimite-rich cements. Cement and Concrete Research, 2019, 123, 105778.	11.0	91
47	Quantification of hydration phases in supersulfated cements: review and new approaches. Advances in Cement Research, 2011, 23, 265-275.	1.6	84
48	Phase equilibria in the system Ca4Al6O12SO4 \hat{a} Ca2SiO4 \hat{a} CaSO4 \hat{a} H2O referring to the hydration of calcium sulfoaluminate cements. RILEM Technical Letters, 0, 1, 10-16.	0.0	74
49	Effect of the addition of ultrafine cement and short fiber reinforcement on shrinkage, rheological and mechanical properties of Portland cement pastes. Cement and Concrete Composites, 2004, 26, 541-549.	10.7	67
50	The effect of glass composition on the reactivity of synthetic glasses. Journal of the American Ceramic Society, 2017, 100, 2553-2567.	3.8	67
51	Thermodynamic data for magnesium (potassium) phosphates. Applied Geochemistry, 2019, 111, 104450.	3.0	66
52	Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. Journal of Thermal Analysis and Calorimetry, 2010, 101, 925-932.	3.6	65
53	Impact of rapid-hardening cements on mechanical properties of cement bitumen emulsion asphalt. Materials and Structures/Materiaux Et Constructions, 2016, 49, 487-498.	3.1	65
54	Correlating cement characteristics with rheology of paste. Cement and Concrete Research, 2007, 37, 1502-1511.	11.0	64

#	Article	IF	Citations
55	Quantification of fly ash in hydrated, blended Portland cement pastes by backscattered electron imaging. Journal of Microscopy, 2013, 251, 188-204.	1.8	57
56	Further studies of the hydration of MgO-hydromagnesite blends. Cement and Concrete Research, 2019, 126, 105912.	11.0	54
57	Influence of slag composition on the hydration of alkali-activated slags. Journal of Sustainable Cement-Based Materials, 2015, 4, 85-100.	3.1	53
58	Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements. Cement and Concrete Research, 2020, 131, 106012.	11.0	53
59	ASR prevention â€" Effect of aluminum and lithium ions on the reaction products. Cement and Concrete Research, 2015, 76, 192-201.	11.0	50
60	Stability of ettringite in CSA cement at elevated temperatures. Advances in Cement Research, 2016, 28, 251-261.	1.6	46
61	Further insights into calcium sulfoaluminate cement expansion. Advances in Cement Research, 2019, 31, 160-177.	1.6	46
62	Thermal behaviour of autoclaved aerated concrete exposed to fire. Cement and Concrete Composites, 2015, 62, 52-58.	10.7	45
63	Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete. Materials, 2016, 9, 330.	2.9	44
64	Tricalcium Silicate Hydration Reaction in the Presence of Comb-Shaped Superplasticizers: Boundary Nucleation and Growth Model Applied to Polymer-Modified Pastes. Journal of Physical Chemistry C, 2012, 116, 10887-10895.	3.1	43
65	Merging High Doxorubicin Loading with Pronounced Magnetic Response and Bioâ€repellent Properties in Hybrid Drug Nanocarriers. Small, 2012, 8, 2381-2393.	10.0	39
66	Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cement and Concrete Research, 2012, 42, 39-50.	11.0	36
67	Calcium Sulfoaluminate Sodalite (<scp><scp>Ca₄Al₆O₁₂SO₄</scp></scp>) Crystal Structure Evaluation and Bulk Modulus Determination. Journal of the American Ceramic Society, 2014, 97, 892-898.	3.8	36
68	Synthesis and hydration of alite-calcium sulfoaluminate cement. Advances in Cement Research, 2017, 29, 101-111.	1.6	36
69	Silica Aerogel–Epoxy Nanocomposites: Understanding Epoxy Reinforcement in Terms of Aerogel Surface Chemistry and Epoxy–Silica Interface Compatibility. ACS Applied Nano Materials, 2018, 1, 4179-4189.	5.0	35
70	Characterization of Polycarboxylateâ€Ether Based Superplasticizer on Cement Clinker Surfaces. Journal of the American Ceramic Society, 2012, 95, 2189-2195.	3.8	34
71	Hydration of blended cement with high volume iron-rich slag from non-ferrous metallurgy. Cement and Concrete Research, 2022, 151, 106624.	11.0	33
72	Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions. Journal of Colloid and Interface Science, 2014, 419, 17-24.	9.4	32

#	Article	IF	Citations
73	Report of RILEM TC 267-TRM phase 3: validation of the R3 reactivity test across a wide range of materials. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	32
74	A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 252-260.	4.7	31
75	Hydration kinetics of tricalcium silicate by calorimetric methods. Journal of Colloid and Interface Science, 2011, 364, 118-124.	9.4	30
76	RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	30
77	Moisture induced length changes of tile adhesive mortars and their impact on adhesion strength. Construction and Building Materials, 2012, 30, 426-438.	7.2	27
78	Precipitation of anionic emulsifier with ordinary Portland cement. Journal of Colloid and Interface Science, 2016, 479, 98-105.	9.4	27
79	Synthesis and characterisation of calcium sulfoaluminate cements produced by different chemical gypsums. Advances in Cement Research, 2019, 31, 113-123.	1.6	26
80	Effect of temperature curing on properties and hydration of wollastonite blended magnesium potassium phosphate cements. Cement and Concrete Research, 2021, 142, 106370.	11.0	26
81	Hydration of calcium aluminate cement blended with anhydrite. Advances in Cement Research, 2018, 30, 24-36.	1.6	24
82	Carbonation resistance of mortar produced with alternative cements. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	24
83	Influence of Cement on Rheology and Stability of Rosin Emulsified Anionic Bitumen Emulsion. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	23
84	Influence of aluminum sulfate on properties and hydration of magnesium potassium phosphate cements. Cement and Concrete Research, 2022, 156, 106788.	11.0	22
85	Reaction of clinker surfaces investigated with atomic force microscopy. Construction and Building Materials, 2012, 35, 92-96.	7.2	16
86	The influence of calcium sulfate content on the hydration of belite-calcium sulfoaluminate cements with different clinker phase compositions. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	16
87	Hygrical shrinkage stresses in tiling systems: Numerical modeling combined with field studies. Cement and Concrete Composites, 2015, 55, 1-10.	10.7	15
88	Influence of shotcrete accelerators on the hydration of cement pastes and their impact on sulfate resistance. Construction and Building Materials, 2021, 266, 120782.	7.2	15
89	How clayey fines in aggregates influence the properties of lime mortars. Materials and Structures/Materiaux Et Constructions, 2007, 39, 433-443.	3.1	13
90	Mechanisms for efficient clay dispersing effect with tannins and sodium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127589.	4.7	13

#	Article	IF	Citations
91	Durability and Testing – Degradation via Mass Transport. RILEM State-of-the-Art Reports, 2014, , 223-276.	0.7	12
92	Evaluation of the consistency of fiber reinforced cementitious composites. Materials and Structures/Materiaux Et Constructions, 2007, 39, 645-654.	3.1	10
93	Polymer dispersions and their interaction with mortar constituents and ceramic tile surfaces studied by zeta-potential measurements and atomic force microscopy. Cement and Concrete Composites, 2012, 34, 604-611.	10.7	9
94	Seasonal heat storage in calcium sulfoaluminate based hardened cement pastes – experiences with different prototypes. Journal of Energy Storage, 2019, 25, 100850.	8.1	8
95	Carbonated wollastonite – An effective supplementary cementitious material?. Journal of Microscopy, 2022, 286, 120-125.	1.8	8
96	Sulfate resistance and phase composition of shotcrete. Tunnelling and Underground Space Technology, 2021, 109, 103760.	6.2	7
97	Thermodynamic model for ternary OPC/CAC/Calcium Sulfate binders. Construction and Building Materials, 2021, 302, 124120.	7.2	6
98	Durability and Testing – Chemical Matrix Degradation Processes. RILEM State-of-the-Art Reports, 2014, , 177-221.	0.7	6
99	In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies. Ultramicroscopy, 2007, 107, 1068-1077.	1.9	5
100	4. Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements. , 2017, , 103-144.		3
101	Outcomes of the round robin tests of RILEM TC 247-DTA on the durability of alkali-activated concrete. MATEC Web of Conferences, 2018, 199, 02024.	0.2	3
102	AAM Concretes: Standards for Mix Design/Formulation and Early-Age Properties. RILEM State-of-the-Art Reports, 2014, , 157-176.	0.7	3
103	Sulfate resistance testing of shotcrete $\hat{a}\in$ Sample preparation in the field and under laboratory conditions. Construction and Building Materials, 2021, 276, 122233.	7.2	2
104	Reactivity of Calcined Clay in Alite-Calcium Sulfoaluminate Cement Hydration. RILEM Bookseries, 2015, , 373-379.	0.4	1