Nicholas A Kotov

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5680992/nicholas-a-kotov-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

458	51,949	122	217
papers	citations	h-index	g-index
537 ext. papers	57,388 ext. citations	13.2 avg, IF	7.78 L-index

#	Paper	IF	Citations
458	Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters <i>Nature Communications</i> , 2022 , 13, 278	17.4	4
457	Circular Polarized Light Emission in Chiral Inorganic Nanomaterials Advanced Materials, 2022, e210843	3124	13
456	Third-harmonic Mie scattering from semiconductor nanohelices. <i>Nature Photonics</i> , 2022 , 16, 126-133	33.9	3
455	Enantiomer-dependent immunological response to chiral nanoparticles <i>Nature</i> , 2022 , 601, 366-373	50.4	36
454	Layered Biomimetic Composites from MXenes with Sequential Bridging <i>Angewandte Chemie - International Edition</i> , 2022 , e202114140	16.4	O
453	Multiscale engineered artificial tooth enamel Science, 2022, 375, 551-556	33.3	19
452	Excitation-dependent emissive FeSe nanoparticles induced by chiral interlayer expansion and their multi-color bio-imaging. <i>Nano Today</i> , 2022 , 43, 101424	17.9	1
451	Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures <i>Chemical Science</i> , 2022 , 13, 595-610	9.4	11
450	A Multiphysics Modeling of Electromagnetic Signaling Phenomena at kHz-GHz Frequencies in Bacterial Biofilms. <i>IEEE Access</i> , 2022 , 1-1	3.5	2
449	Electrostatic Asymmetry of Wurtzite Nanocrystals and Resulting Photocatalytic Properties. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 4751-4761	3.8	
448	Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles <i>Nature Nanotechnology</i> , 2022 ,	28.7	10
447	Spanning Network Gels from Nanoparticles and Graph Theoretical Analysis of their Structure and Properties <i>Advanced Materials</i> , 2022 , e2201313	24	2
446	Experimental Evidence of Radio Frequency Radiation From Staphylococcus aureus Biofilms. <i>IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology</i> , 2022 , 1-9	2.8	1
445	Tribute to Marie-Paule Pileni. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 7357-7358	3.8	
444	Unifying structural descriptors for biological and bioinspired nanoscale complexes. <i>Nature Computational Science</i> , 2022 , 2, 243-252		1
443	Self-Assembly Mechanism of Complex Corrugated Particles. <i>Journal of the American Chemical Society</i> , 2021 , 143, 19655-19667	16.4	4
442	Optical processes in carbon nanocolloids. <i>CheM</i> , 2021 , 7, 606-628	16.2	27

(2020-2021)

441	X-ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano, 2021, 15, 3754-3807	16.7	18
440	Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. <i>Science</i> , 2021 , 371, 1368-1374	33.3	66
439	Broadband Circular Polarizers via Coupling in 3D Plasmonic Meta-Atom Arrays. <i>ACS Photonics</i> , 2021 , 8, 1286-1292	6.3	4
438	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. <i>MRS Bulletin</i> , 2021 , 46, 576-587	3.2	4
437	Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. <i>Advanced Materials</i> , 2021 , 33, e2007900	24	3
436	Structural Analysis of Nanoscale Network Materials Using Graph Theory. ACS Nano, 2021,	16.7	6
435	Reconfigurable Chirality of DNA-Bridged Nanorod Dimers. ACS Nano, 2021,	16.7	2
434	Real-Time 3D Analysis During Tomographic Experiments on tomviz. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2860-2862	0.5	O
433	Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. <i>Nature Biomedical Engineering</i> , 2021 , 5, 103-113	19	36
432	Fiber-reinforced monolithic supercapacitors with interdigitated interfaces. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11033-11041	13	1
431	Photocatalytic Hedgehog Particles for High Ionic Strength Environments. ACS Nano, 2021, 15, 4226-423	34 16.7	4
430	Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength. <i>SmartMat</i> , 2021 , 2, 76-87	22.8	9
429	Single-Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. <i>Advanced Materials</i> , 2021 , 33, e2103067	24	8
428	Frustrated self-assembly of non-Euclidean crystals of nanoparticles. <i>Nature Communications</i> , 2021 , 12, 4925	17.4	5
427	Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale. <i>ACS Nano</i> , 2021 , 15, 15229-15237	16.7	1
426	Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. <i>Materials</i> , 2020 , 13,	3.5	3
425	Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15226-15231	16.4	28
424	Chiral Nanoceramics. <i>Advanced Materials</i> , 2020 , 32, e1906738	24	24

423	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4206-4212	16.4	74
422	Emergence of complexity in hierarchically organized chiral particles. <i>Science</i> , 2020 , 368, 642-648	33.3	85
421	Chiromagnetic Properties of Semiconductor Nanorods. <i>Matter</i> , 2020 , 2, 1089-1090	12.7	2
420	Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LH T Transgenic Mice Reti-noblastoma Model. <i>Journal of Ophthalmic and Vision Research</i> , 2020 , 15, 446-45	2 ^{1.2}	
419	Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LHBETATAG Transgenic Mice Reti-noblastoma Model. <i>Journal of Ophthalmic and Vision Research</i> , 2020 , 15, 446-452	1.2	0
418	Inorganic Nanostructures with Strong Chiroptical Activity. CCS Chemistry, 2020, 2, 583-604	7.2	24
417	Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. <i>ACS Nano</i> , 2020 ,	16.7	10
416	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. <i>Angewandte Chemie</i> , 2020 , 132, 8620-8629	3.6	2
415	Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting. <i>Joule</i> , 2020 , 4, 247-261	27.8	78
414	Chemo- and Thermomechanically Configurable 3D Optical Metamaterials Constructed from Colloidal Nanocrystal Assemblies. <i>ACS Nano</i> , 2020 , 14, 1427-1435	16.7	10
413	Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable near-Infrared Optical Activity. <i>Chemistry of Materials</i> , 2020 , 32, 476-488	9.6	39
412	Nanoceramics: Chiral Nanoceramics (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070311	24	2
411	Early Growth Stages of Hierarchically Organized Chiral Structures. <i>Microscopy and Microanalysis</i> , 2020 , 26, 550-551	0.5	0
410	Omnidispersible Microscale Colloids with Nanoscale Polymeric Spikes. <i>Chemistry of Materials</i> , 2020 , 32, 9897-9905	9.6	3
409	Biomorphic structural batteries for robotics. <i>Science Robotics</i> , 2020 , 5,	18.6	34
408	Plasmonic Nanoparticles with Supramolecular Recognition. <i>Advanced Functional Materials</i> , 2020 , 30, 1902082	15.6	36
407	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8542-8551	16.4	16
406	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000

(2018-2020)

405	Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity. <i>Chirality</i> , 2020 , 32, 899-906	2.1	5
404	Enantiomeric Discrimination by Surface-Enhanced Raman Scattering Thiral Anisotropy of Chiral Nanostructured Gold Films. <i>Angewandte Chemie</i> , 2020 , 132, 15338-15343	3.6	12
403	Origin of chiroptical activity in nanorod assemblies. <i>Science</i> , 2019 , 365, 1378-1379	33.3	6
402	The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Mbwald. <i>ACS Nano</i> , 2019 , 13, 6151-6169	16.7	127
401	Anti-Biofilm Activity of Graphene Quantum Dots via Self-Assembly with Bacterial Amyloid Proteins. <i>ACS Nano</i> , 2019 , 13, 4278-4289	16.7	39
400	Three-dimensional biomimetic scaffolds for hepatic differentiation of size-controlled embryoid bodies. <i>Journal of Materials Research</i> , 2019 , 34, 1371-1380	2.5	3
399	Spontaneous Formation of Cold-Welded Plasmonic Nanoassemblies with Refracted Shapes for Intense Raman Scattering. <i>Langmuir</i> , 2019 , 35, 4110-4116	4	3
398	Supraparticle Nanoassemblies with Enzymes. <i>Chemistry of Materials</i> , 2019 , 31, 7493-7500	9.6	13
397	Nonsolvent induced reconfigurable bonding configurations of ligands in nanoparticle purification. <i>Nanoscale Horizons</i> , 2019 , 4, 1416-1424	10.8	5
396	Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light. Journal of the American Chemical Society, 2019 , 141, 11739-11744	16.4	46
395	Stretchable batteries with gradient multilayer conductors. <i>Science Advances</i> , 2019 , 5, eaaw1879	14.3	67
394	Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. <i>Nature Materials</i> , 2019 , 18, 820-826	27	63
393	Single- and multi-component chiral supraparticles as modular enantioselective catalysts. <i>Nature Communications</i> , 2019 , 10, 4826	17.4	46
392	Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3391-3400	11.5	52
391	Biomimetic Solid-State Zn Electrolyte for Corrugated Structural Batteries. ACS Nano, 2019, 13, 1107-11	15 6.7	48
390	Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). <i>Nanoscale</i> , 2018 , 10, 4927-4939	7.7	129
389	Dipole-like electrostatic asymmetry of gold nanorods. <i>Science Advances</i> , 2018 , 4, e1700682	14.3	27
388	Chiromagnetic nanoparticles and gels. <i>Science</i> , 2018 , 359, 309-314	33.3	122

387	Biomimetic Nanocomposites: Water-Rich Biomimetic Composites with Abiotic Self-Organizing Nanofiber Network (Adv. Mater. 1/2018). <i>Advanced Materials</i> , 2018 , 30, 1870007	24	10
386	Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. <i>Nature Communications</i> , 2018 , 9, 181	17.4	24
385	Scattering Properties of Individual Hedgehog Particles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1201	53.1820	21 10
384	Electrochemistry on Stretchable Nanocomposite Electrodes: Dependence on Strain. <i>ACS Nano</i> , 2018 , 12, 9223-9232	16.7	8
383	Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites. <i>Zeitschrift Fur Physikalische Chemie</i> , 2018 , 232, 1383-1398	3.1	5
382	Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. <i>Nature Chemistry</i> , 2018 , 10, 821-830	17.6	120
381	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14014-14028	3.8	7
380	Environmentally responsive plasmonic nanoassemblies for biosensing. <i>Chemical Society Reviews</i> , 2018 , 47, 4677-4696	58.5	78
379	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5359-5364	11.5	77
378	Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. <i>ACS Nano</i> , 2018 , 12, 6378-6388	16.7	230
377	Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. <i>Current Pharmaceutical Design</i> , 2018 , 24, 896-903	3.3	52
376	Water-Rich Biomimetic Composites with Abiotic Self-Organizing Nanofiber Network. <i>Advanced Materials</i> , 2018 , 30, 1703343	24	94
375	Layered biomimetic nanocomposites replicate bone surface in three-dimensional cell cultures. <i>Nanocomposites</i> , 2018 , 4, 156-166	3.4	1
374	Interpretable and Efficient Interferometric Contrast in Scanning Transmission Electron Microscopy with a Diffraction-Grating Beam Splitter. <i>Physical Review Applied</i> , 2018 , 10,	4.3	14
373	Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. <i>Nature Communications</i> , 2018 , 9, 4193	17.4	53
372	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. <i>ACS Energy Letters</i> , 2018 , 3, 1578-1583	20.1	20
371	Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7835-7845	16.4	23
370	A Helicene Nanoribbon with Greatly Amplified Chirality. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6235-6239	16.4	73

(2017-2017)

3	69	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. <i>Chemical Reviews</i> , 2017 , 117, 1826-1914	68.1	333
3	68	Abiotic tooth enamel. <i>Nature</i> , 2017 , 543, 95-98	50.4	127
3	67	Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. <i>Science Advances</i> , 2017 , 3, e1601159	14.3	96
3	66	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126	16.7	3
3	65	Chiral Inorganic Nanostructures. <i>Chemical Reviews</i> , 2017 , 117, 8041-8093	68.1	435
3	64	Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods. <i>ACS Nano</i> , 2017 , 11, 5925-5932	16.7	17
3	63	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714
3	62	The art of empty space. <i>Science</i> , 2017 , 358, 448	33.3	2
3	61	Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16630-16639	16.4	33
3	60	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. <i>Applied Physics Letters</i> , 2017 , 111, 161901	3.4	32
3.	59	Branched Aramid Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 11744-11748	16.4	90
3.	58	Branched Aramid Nanofibers. <i>Angewandte Chemie</i> , 2017 , 129, 11906-11910	3.6	13
3.	57	Origami and Kirigami Nanocomposites. <i>ACS Nano</i> , 2017 , 11, 7587-7599	16.7	139
3.	56	Authentic synthetic nacre. <i>National Science Review</i> , 2017 , 4, 284-285	10.8	2
3.	55	Chiral Ceramic Nanoparticles and Peptide Catalysis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13701-13712	16.4	67
3.	54	Intracellular localization of nanoparticle dimers by chirality reversal. <i>Nature Communications</i> , 2017 , 8, 1847	17.4	76
3.	53	Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. <i>Nature Chemistry</i> , 2017 , 9, 287-29	9 4 7.6	71
3.	52	Self-assembly of inorganic nanoparticles: Ab ovo. <i>Europhysics Letters</i> , 2017 , 119, 66008	1.6	17

351	Nanoparticle Assembly: A Perspective and some Unanswered Questions. Current Science, 2017, 112, 163	5 2.2	10
350	Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets. <i>Langmuir</i> , 2016 , 32, 12468-12475	4	2
349	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. <i>Advanced Functional Materials</i> , 2016 , 26, 8435-8445	15.6	89
348	Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres. <i>Nature Communications</i> , 2016 , 7, 10701	17.4	80
347	Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. <i>ACS Nano</i> , 2016 , 10, 3248-56	16.7	86
346	Chiral Graphene Quantum Dots. ACS Nano, 2016, 10, 1744-55	16.7	216
345	Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. <i>Nature Materials</i> , 2016 , 15, 461-8	27	169
344	Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. <i>Journal of the American Chemical Society</i> , 2016 , 138, 306-12	16.4	329
343	Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 33-42	6	35
342	Strong coupling of localized surface plasmons and ensembles of dye molecules. <i>Optics Express</i> , 2016 , 24, 25653-25664	3.3	9
341	Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. <i>Advanced Materials</i> , 2016 , 28, 5907-15	24	107
340	Circular extinction of plasmonic silver nanocaps and gas sensing. Faraday Discussions, 2016, 186, 345-52	3.6	1
339	Synthesis of Nanoparticle Assemblies: general discussion. <i>Faraday Discussions</i> , 2016 , 186, 123-52	3.6	
338	Kirigami Nanocomposites as Wide-Angle Diffraction Gratings. <i>ACS Nano</i> , 2016 , 10, 6156-62	16.7	57
337	Chronic in vivo stability assessment of carbon fiber microelectrode arrays. <i>Journal of Neural Engineering</i> , 2016 , 13, 066002	5	121
336	Particle self-assembly: Superstructures simplified. <i>Nature Nanotechnology</i> , 2016 , 11, 1002-1003	28.7	11
335	Anisotropic nanoparticles: general discussion. <i>Faraday Discussions</i> , 2016 , 191, 229-254	3.6	5
334	Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles. <i>Faraday Discussions</i> , 2016 , 191, 141-157	3.6	6

(2015-2015)

Field-assisted self-assembly process: general discussion. <i>Faraday Discussions</i> , 2015 , 181, 463-79	3.6	1
Aramid nanofiber-reinforced transparent nanocomposites. <i>Journal of Composite Materials</i> , 2015 , 49, 1873-1879	2.7	58
Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids. <i>ACS Nano</i> , 2015 , 9, 8231-8	16.7	27
A kirigami approach to engineering elasticity in nanocomposites through patterned defects. <i>Nature Materials</i> , 2015 , 14, 785-9	27	389
Insertion of linear 8.4 th diameter 16 channel carbon fiber electrode arrays for single unit recordings. <i>Journal of Neural Engineering</i> , 2015 , 12, 046009	5	104
Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. <i>ACS Nano</i> , 2015 , 9, 5009-17	16.7	34
Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. <i>Synthetic Metals</i> , 2015 , 205, 185-189	3.6	4
Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. <i>ACS Photonics</i> , 2015 , 2, 1602-1610	6.3	75
Nonadditivity of nanoparticle interactions. <i>Science</i> , 2015 , 350, 1242477	33.3	327
Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. <i>ACS Nano</i> , 2015 , 9, 9097-105	16.7	139
Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3820-31	3.6	12
Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. <i>Small</i> , 2015 , 11, 1320-7	11	29
Chiral templating of self-assembling nanostructures by circularly polarized light. <i>Nature Materials</i> , 2015 , 14, 66-72	27	251
Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 9094-9098	3.6	3
Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8966-70	16.4	21
Generic, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3161-8	11.5	23
Low-current field-assisted assembly of copper nanoparticles for current collectors. <i>Faraday Discussions</i> , 2015 , 181, 383-401	3.6	14
Anomalous dispersions of 'hedgehog' particles. <i>Nature</i> , 2015 , 517, 596-9	50.4	87
	Aramid nanofiber-reinforced transparent nanocomposites. <i>Journal of Composite Materials</i> , 2015, 49, 1873-1879 Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids. <i>ACS Nano</i> , 2015, 9, 8231-8 A kirigami approach to engineering elasticity in nanocomposites through patterned defects. <i>Nature Materials</i> , 2015, 14, 785-9 Insertion of linear 8.4 th diameter 16 channel carbon fiber electrode arrays for single unit recordings. <i>Journal of Neural Engineering</i> , 2015, 12, 046009 Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. <i>ACS Nano</i> , 2015, 9, 5009-17 Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. <i>Synthetic Metals</i> , 2015, 205, 185-189 Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. <i>ACS Photonics</i> , 2015, 2, 1602-1610 Nonadditivity of nanoparticle interactions. <i>Science</i> , 2015, 350, 1242477 Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. <i>ACS Nano</i> , 2015, 9, 9097-105 Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. <i>Physical Chemistry Chemical Physics</i> , 2015, 17, 3820-31 Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. <i>Small</i> , 2015, 11, 1320-7 Chiral templating of self-assembling nanostructures by circularly polarized light. <i>Nature Materials</i> , 2015, 14, 66-72 Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie</i> , 2015, 127, 9094-9098 Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015, 54, 8966-70 Ceneric, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assembly. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015, 112, E316-18 Low-current field-assisted assembly	Aramid nanofiber-reinforced transparent nanocomposites. Journal of Composite Materials, 2015, 49, 1873-1879 Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids. ACS Nano, 2015, 9, 8231-8 A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 2015, 14, 785-9 Insertion of linear 8.4 fb diameter 16 channel carbon fiber electrode arrays for single unit recordings. Journal of Neural Engineering, 2015, 12, 046009 Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. ACS Nano, 2015, 9, 5009-17 Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. Synthetic Metals, 2015, 205, 185-189 Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. ACS Photonics , 2015, 2, 1602-1610 Nonadditivity of nanoparticle interactions. Science, 2015, 350, 1242477 33-3 Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano, 2015, 9, 9097-105 Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. Physical Chemistry Chemical Physics, 2015, 17, 3820-31 Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. Small, 2015, 11, 1320-7 Chiral templating of self-assembling nanostructures by circularly polarized light. Nature Materials, 2015, 14, 66-72 Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-70 Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-70 Ceneric, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 83161-8 Low-current field-assisted assembly

315	A dendrite-suppressing composite ion conductor from aramid nanofibres. <i>Nature Communications</i> , 2015 , 6, 6152	17.4	225
314	Nanoparticle self-assembly: A loop of two rods. <i>Nature Materials</i> , 2014 , 13, 228-9	27	7
313	Phase-pure FeSe(x) (x = 1, 2) nanoparticles with one- and two-photon luminescence. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7189-92	16.4	31
312	Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. <i>Nature Communications</i> , 2014 , 5, 3593	17.4	81
311	Scalable nanopillar arrays with layer-by-layer patterned overt and covert images. <i>Advanced Materials</i> , 2014 , 26, 6119-24	24	34
310	Subcellular neural probes from single-crystal gold nanowires. <i>ACS Nano</i> , 2014 , 8, 8182-9	16.7	54
309	Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies. <i>Nano Letters</i> , 2014 , 14, 6799-810	11.5	55
308	Simultaneously high stiffness and damping in nanoengineered microtruss composites. <i>ACS Nano</i> , 2014 , 8, 3468-75	16.7	35
307	Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. <i>Nano Letters</i> , 2014 , 14, 3908-13	11.5	145
306	Shape-morphing nanocomposite origami. <i>Langmuir</i> , 2014 , 30, 5378-85	4	33
306 305	Shape-morphing nanocomposite origami. <i>Langmuir</i> , 2014 , 30, 5378-85 Ultrastrong Materials, Nanostructured 2014 , 5011-5017	4	33
		4	33
305	Ultrastrong Materials, Nanostructured 2014 , 5011-5017	3.7	33 42
305 304	Ultrastrong Materials, Nanostructured 2014 , 5011-5017 Antibodies and Antigens: Luminescence of Nanoparticle-Labeled 2014 , 191-197 Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the		
305 304 303	Ultrastrong Materials, Nanostructured 2014 , 5011-5017 Antibodies and Antigens: Luminescence of Nanoparticle-Labeled 2014 , 191-197 Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. <i>PLoS ONE</i> , 2014 , 9, e91360 Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. <i>Advanced Functional</i>	3.7	42
305 304 303 302	Ultrastrong Materials, Nanostructured 2014 , 5011-5017 Antibodies and Antigens: Luminescence of Nanoparticle-Labeled 2014 , 191-197 Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. <i>PLoS ONE</i> , 2014 , 9, e91360 Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. <i>Advanced Functional Materials</i> , 2014 , 24, 1439-1448 Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert	3·7 15.6	42
305 304 303 302 301	Ultrastrong Materials, Nanostructured 2014 , 5011-5017 Antibodies and Antigens: Luminescence of Nanoparticle-Labeled 2014 , 191-197 Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. <i>PLoS ONE</i> , 2014 , 9, e91360 Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. <i>Advanced Functional Materials</i> , 2014 , 24, 1439-1448 Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200 Effect of TGA Concentration on Morphology of Cu2S Nanoparticals. <i>Advanced Materials Research</i> ,	3·7 15.6 24	4 ² 6 ₂

(2012-2013)

297	Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. <i>ACS Nano</i> , 2013 , 7, 9010-8	16.7	52
296	Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. <i>ACS Nano</i> , 2013 , 7, 7619-29	16.7	65
295	Attomolar DNA detection with chiral nanorod assemblies. <i>Nature Communications</i> , 2013 , 4, 2689	17.4	381
294	Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18629-36	16.4	241
293	Chiral plasmonic nanostructures on achiral nanopillars. <i>Nano Letters</i> , 2013 , 13, 5277-83	11.5	107
292	Universal Synthesis of Single-Phase Pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2567-2573	3.8	103
291	Resolution of oligomeric species during the aggregation of A\pi1-40 using (19)F NMR. <i>Biochemistry</i> , 2013 , 52, 1903-12	3.2	85
290	Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. <i>Chemical Society Reviews</i> , 2013 , 42, 3114-26	58.5	188
289	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 641-7	6.4	69
288	Nanoengineered colloidal probes for Raman-based detection of biomolecules inside living cells. <i>Small</i> , 2013 , 9, 351-6	11	47
287	Reactive Aramid Nanostructures as High-Performance Polymeric Building Blocks for Advanced Composites. <i>Advanced Functional Materials</i> , 2013 , 23, 2072-2080	15.6	124
286	Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. <i>ACS Nano</i> , 2013 , 7, 4818-29	16.7	113
285	Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles. <i>Advanced Optical Materials</i> , 2013 , 1, 626-630	8.1	52
284	Chiral plasmonics of self-assembled nanorod dimers. <i>Scientific Reports</i> , 2013 , 3, 1934	4.9	165
283	Replication of bone marrow differentiation niche: comparative evaluation of different three-dimensional matrices. <i>Small</i> , 2013 , 9, 1008-15	11	18
282	Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. <i>Nano Today</i> , 2012 , 7, 6-9	17.9	53
281	Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. <i>Nature Materials</i> , 2012 , 11, 1065-73	27	482
2 80	Streptavidin Inhibits Self-Assembly of CdTe Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3249-3256	6.4	6

279	Traversing Material Scales: Macroscale LBL-Assembled Nanocomposites with Microscale Inverted Colloidal Crystal Architecture. <i>Chemistry of Materials</i> , 2012 , 24, 9-11	9.6	12
278	Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15114-21	16.4	316
277	The state of nanoparticle-based nanoscience and biotechnology: progress, promises, and challenges. <i>ACS Nano</i> , 2012 , 6, 8468-83	16.7	188
276	Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies. <i>ACS Nano</i> , 2012 , 6, 8357-65	16.7	119
275	Layered nanocomposites from gold nanoparticles for neural prosthetic devices. <i>Nano Letters</i> , 2012 , 12, 3391-8	11.5	67
274	Record Properties of Layer-by-Layer Assembled Composites 2012 , 573-593		1
273	Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1699-709	16.4	240
272	Graphene-based multilayers: Critical evaluation of materials assembly techniques. <i>Nano Today</i> , 2012 , 7, 430-447	17.9	112
271	Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films. <i>Applied Physics Letters</i> , 2012 , 101, 203301	3.4	2
270	Nonexclusive fluorescent sensing for L/D enantiomers enabled by dynamic nanoparticle-nanorod assemblies. <i>Analytical Chemistry</i> , 2012 , 84, 7330-5	7.8	58
269	Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano, 2012, 6, 3800-12	16.7	90
268	Dynamic nanoparticle assemblies. <i>Accounts of Chemical Research</i> , 2012 , 45, 1916-26	24.3	198
267	Nanocomposite microcontainers. Advanced Materials, 2012, 24, 4597-600	24	45
266	Incorporation of Indium Tin Oxide Nanoparticles in PEMFC Electrodes. <i>Advanced Energy Materials</i> , 2012 , 2, 569-574	21.8	10
265	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. <i>Nature Nanotechnology</i> , 2012 , 7, 479	28.7	22
264	Direct-write maskless lithography of LBL nanocomposite films and its prospects for MEMS technologies. <i>Nanoscale</i> , 2012 , 4, 4393-8	7.7	31
263	Transparent conductors from carbon nanotubes LBL-assembled with polymer dopant with Electron transfer. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7450-60	16.4	78
262	Reversible nanoparticle gels with colour switching. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11639		22

261	Nanoscale helices from inorganic materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6775		82
260	Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods. <i>Biomedical Optics Express</i> , 2011 , 2, 645-57	3.5	35
259	Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8157-61	11.5	383
258	Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. <i>ACS Nano</i> , 2011 , 5, 3319-25	16.7	165
257	Multidirectional Hierarchical Nanocomposites Made by Carbon Nanotube Growth within Layer-by-Layer-Assembled Films. <i>Chemistry of Materials</i> , 2011 , 23, 1023-1031	9.6	20
256	Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods 2011 ,		1
255	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. <i>Nature Nanotechnology</i> , 2011 , 6, 580-7	28.7	429
254	Fluorescence spectroscopy of semiconductor CdTe nanocrystals: preparation effect on photostability. <i>Open Physics</i> , 2011 , 9,	1.3	1
253	Helical assemblies of gold nanoparticles. <i>Small</i> , 2011 , 7, 2004-9	11	25
252	Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins. <i>Angewandte Chemie</i> , 2011 , 123, 5216-5221	3.6	9
252 251		3.6	9
	Proteins. Angewandte Chemie, 2011 , 123, 5216-5221 Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional		2
251	Proteins. Angewandte Chemie, 2011, 123, 5216-5221 Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). Angewandte Chemie, 2011, 123, 5096-5096 Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with	3.6	2 213
251 250	Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5096-5096 Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5110-5 Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). <i>Angewandte Chemie - International</i>	3.6	2 213
251 250 249	Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5096-5096 Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5110-5 Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4992-4992 Crown ether assembly of gold nanoparticles: melamine sensor. <i>Biosensors and Bioelectronics</i> , 2011 ,	3.6 16.4 16.4	2 213 3
251 250 249 248	Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5096-5096 Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5110-5 Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4992-4992 Crown ether assembly of gold nanoparticles: melamine sensor. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2032-7 In situ gene transfection and neuronal programming on electroconductive nanocomposite to	3.6 16.4 16.4	2 213 3 113
251 250 249 248	Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5096-5096 Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5110-5 Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4992-4992 Crown ether assembly of gold nanoparticles: melamine sensor. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2032-7 In situ gene transfection and neuronal programming on electroconductive nanocomposite to reduce inflammatory response. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1109-1114	3.6 16.4 16.4	2 213 3 113

243	Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano, 2011, 5, 6945-54	16.7	337
242	Synthesis and bioevaluation of Iplabeled gold nanorods. <i>Nanotechnology</i> , 2011 , 22, 135102	3.4	28
241	Ultrafast Laser Alignment and Processing of Carbon Nanotube Films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1308, 10601		
240	Dual-mode imaging with radiolabeled gold nanorods. <i>Journal of Biomedical Optics</i> , 2011 , 16, 051307	3.5	33
239	The Role of Interface and Reinforcement in the Finite Deformation Response of Polyurethane-Montmorillonite Nanocomposites. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2011 , 133-137	0.3	
238	Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions. <i>Nanoscale</i> , 2010 , 2, 2084-90	7.7	32
237	Formation and assembly-disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1860-72	16.4	87
236	Inkjet deposition of layer-by-layer assembled films. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14496-502	16.4	91
235	Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires: Experimental Observation and Theoretical Description. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1404	-∳4 ⁸ 10	10
234	Effect of CdSe Nanoparticles on the Growth of Te Nanowires: Greater Length and Tortuosity and Nonmonotonic Concentration Effect. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2428-2433	3.8	3
233	Chiral luminescent CdS nano-tetrapods. Chemical Communications, 2010, 46, 6072-4	5.8	85
232	Simultaneous photoacoustic detection of multiple inflammatory biomarkers using bioconjugated gold nanorods as selective targeting agents 2010 ,		1
231	Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit. <i>ACS Nano</i> , 2010 , 4, 3725-34	16.7	128
230	Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6006-13	16.4	218
229	E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2732-2736	4.9	79
228	Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. <i>Science</i> , 2010 , 327, 1355-9	33.3	303
227	pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter, 2010, 6, 800-	 8 9 T	59
226	Spontaneous formation of temperature-responsive assemblies by molecular recognition of a #cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide). <i>Soft Matter</i> , 2010 , 6, 610-6	1 3 .6	31

(2009-2010)

225	"Cloud" assemblies: quantum dots form electrostatically bound dynamic nebulae around large gold nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11878-84	3.6	5
224	Brillouin Light Scattering Investigation of the Mechanical Properties of Layer-by-Layer Assembled Cellulose Nanocrystal Films. <i>Macromolecules</i> , 2010 , 43, 9541-9548	5.5	33
223	High-resolution imaging of molecular and nanoparticles assemblies with Kelvin force microscopy. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 7060-4	1.3	4
222	SERS-active gold lace nanoshells with built-in hotspots. <i>Nano Letters</i> , 2010 , 10, 4013-9	11.5	142
221	Chemistry. Inorganic nanoparticles as protein mimics. <i>Science</i> , 2010 , 330, 188-9	33.3	265
220	Melanin-containing films: growth from dopamine solutions versus layer-by-layer deposition. <i>ChemPhysChem</i> , 2010 , 11, 3299-305	3.2	53
219	Carbon Nanotubes on Polymeric Microcapsules: Free-Standing Structures and Point-Wise Laser Openings. <i>Advanced Functional Materials</i> , 2010 , 20, 3136-3142	15.6	59
218	Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. <i>Advanced Materials</i> , 2010 , 22, 2338-42	24	96
217	Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5472-5	16.4	231
216	Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). <i>Macromolecular Rapid Communications</i> , 2010 , 31, 228-36	4.8	76
215	Nanoparticle-based environmental sensors. <i>Materials Science and Engineering Reports</i> , 2010 , 70, 265-27	'430.9	106
214	Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid) nanocomposite films. <i>Engineering Fracture Mechanics</i> , 2010 , 77, 3227-3245	4.2	6
213	Automated spin-assisted layer-by-layer assembly of nanocomposites. <i>Review of Scientific Instruments</i> , 2009 , 80, 023903	1.7	42
212	Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. <i>Physical Review B</i> , 2009 , 80,	3.3	73
211	LBL assembled laminates with hierarchical organization from nano- to microscale: high-toughness nanomaterials and deformation imaging. <i>ACS Nano</i> , 2009 , 3, 1564-72	16.7	64
2 10	Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1208, 1		
209	Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. <i>Experimental Hematology</i> , 2009 , 37, 101-10	3.1	84
208	Nanomaterials for Neural Interfaces. <i>Advanced Materials</i> , 2009 , 21, 3970-4004	24	422

207	Diffusional self-organization in exponential layer-by-layer films with micro- and nanoscale periodicity. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7073-7	16.4	52
206	Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5326-9	16.4	111
205	Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. <i>Biomaterials</i> , 2009 , 30, 4687-	94 5.6	125
204	Polymer/clay and polymer/carbon nanotube hybrid organicIhorganic multilayered composites made by sequential layering of nanometer scale films. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 2835	-2851	87
203	Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. <i>Journal of Nondestructive Evaluation</i> , 2009 , 28, 9-25	2.1	166
202	Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. <i>Small</i> , 2009 , 5, 1008-13	11	65
201	In vitro toxicity testing of nanoparticles in 3D cell culture. <i>Small</i> , 2009 , 5, 1213-21	11	244
200	In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. <i>Biomaterials</i> , 2009 , 30, 1071-9	15.6	115
199	In vitro integration of human skin dermis with porous cationic hydrogels. <i>Acta Biomaterialia</i> , 2009 , 5, 3337-45	10.8	6
198	A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 4316-4321	3.9	25
197	Single-Walled Carbon Nanotubes Spontaneous Loading into Exponentially Grown LBL Films. <i>Chemistry of Materials</i> , 2009 , 21, 4397-4400	9.6	21
196	Gold colloids with unconventional angled shapes. <i>Langmuir</i> , 2009 , 25, 11431-5	4	34
195	Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications. <i>Langmuir</i> , 2009 , 25, 14093-9	4	30
194	Control of Energy Transfer to CdTe Nanowires via Conjugated Polymer Orientation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 109-116	3.8	23
193	Self-guided one-sided metal reduction in te nanowires leading to Au-Te matchsticks. <i>Langmuir</i> , 2009 , 25, 13545-50	4	16
192	Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. <i>Nanotechnology</i> , 2009 , 20, 215602	3.4	60
191	The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites. <i>Macromolecules</i> , 2009 , 42, 6588-6595	5.5	64
190	Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. <i>Nano Letters</i> , 2009 , 9, 273-8	11.5	174

(2008-2009)

189	Nanoparticle assembly for 1D and 2D ordered structures. Soft Matter, 2009, 5, 1146	3.6	166
188	Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. <i>Nano Letters</i> , 2009 , 9, 4012-8	11.5	103
187	Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. <i>Nano Letters</i> , 2009 , 9, 2153-9	11.5	208
186	Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness. <i>ACS Nano</i> , 2009 , 3, 1711-22	16.7	131
185	Free flow electrophoresis for the separation of CdTe nanoparticles. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1390		31
184	Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. <i>Nano Letters</i> , 2009 , 9, 4147-52	11.5	222
183	Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification 2009 , 28, 9		1
182	Targeted gold nanoparticles enable molecular CT imaging of cancer. <i>Nano Letters</i> , 2008 , 8, 4593-6	11.5	640
181	ONE-AND TWO-DIMENSIONAL ASSEMBLIES OF NANOPARTICLES: MECHANISMS OF FORMATION AND FUNCTIONALITY. <i>Annual Review of Nano Research</i> , 2008 , 345-375		
180	Reversible loading and unloading of nanoparticles in "exponentially" growing polyelectrolyte LBL films. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3748-9	16.4	81
179	Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. <i>Nanotechnology</i> , 2008 , 19, 095101	3.4	94
178	Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. <i>Langmuir</i> , 2008 , 24, 568-74	4	161
177	Single particle plasmon spectroscopy of silver nanowires and gold nanorods. <i>Nano Letters</i> , 2008 , 8, 320	014 .5	92
176	Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. <i>Tissue Engineering - Part A</i> , 2008 , 14, 1639-49	3.9	43
175	Conductive textiles and polymer-ceramic composites for novel load bearing antennas 2008,		11
174	Three-dimensional cell culture matrices: state of the art. <i>Tissue Engineering - Part B: Reviews</i> , 2008 , 14, 61-86	7.9	790
173	Media Effect on CdTe Nanowire Growth: Mechanism of Self-Assembly, Ostwald Ripening, and Control of NW Geometry. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 370-377	3.8	38
172	Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. <i>Nano Letters</i> , 2008 , 8, 4151-7	11.5	447

171	Nanoscale design of ultrastrong materials by LBL assembly 2008,		1
170	Exponential growth of LBL films with incorporated inorganic sheets. <i>Nano Letters</i> , 2008 , 8, 1762-70	11.5	196
169	High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. <i>ACS Nano</i> , 2008 , 2, 928-38	16.7	151
168	Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 14359-63	3.4	93
167	Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials. <i>Langmuir</i> , 2008 , 24, 13833-7	4	106
166	Optical Emission and Energy Transfer in NanoparticleNanorod Assemblies: Potential Energy Pump System for Negative Refractive Index Materials. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18314-18320) ^{3.8}	25
165	In vivo imaging of inflammatory responses by photoacoustics using cell-targeted gold nanorods (GNR) as contrast agent 2008 ,		3
164	Enhanced photoacoustic neuroimaging with gold nanorods and PEBBLEs 2008,		3
163	Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors. Journal of Intelligent Material Systems and Structures, 2008 , 19, 747-764	2.3	121
162	Inductively coupled nanocomposite wireless strain and pH sensors. <i>Smart Structures and Systems</i> , 2008 , 4, 531-548		39
161	Spatial structural sensing by carbon nanotube-based skins 2008,		2
160	Passive wireless sensing using SWNT-based multifunctional thin film patches. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2008 , 28, 87-94	0.4	14
159	Fuel Cell Membrane Electrode Assemblies Fabricated by Layer-by-Layer Electrostatic Self-Assembly Techniques. <i>Advanced Functional Materials</i> , 2008 , 18, 3003-3009	15.6	71
158	The Effect of Stabilizer Density on Transformation of CdTe Nanoparticles Induced by Ag Cations. <i>Advanced Functional Materials</i> , 2008 , 18, 3801-3808	15.6	28
157	Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires. <i>Accounts of Chemical Research</i> , 2008 , 41, 1831-41	24.3	476
156	Layer-by-layer (LBL) assembly with semiconductor nanoparticles and nanowires 2008 , 197-216		3
155	Dimensionally Graded Semiconductor Nanoparticle Films 2008 , 1062-1069		
154	Nanostructured Ultrastrong Materials 2008 , 3072-3079		

(2007-2007)

153	Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1050-1054		118
152	Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics. <i>Chemistry of Materials</i> , 2007 , 19, 5467-5474	9.6	145
151	Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. <i>Nano Letters</i> , 2007 , 7, 513-9	11.5	128
150	Nanostructured thin films made by dewetting method of layer-by-layer assembly. <i>Nano Letters</i> , 2007 , 7, 3266-73	11.5	110
149	Self-organization of Te nanorods into V-shaped assemblies: a Brownian dynamics study and experimental insights. <i>ACS Nano</i> , 2007 , 1, 126-32	16.7	19
148	Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. <i>Nano Letters</i> , 2007 , 7, 1123-8	11.5	282
147	Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. <i>Nano Letters</i> , 2007 , 7, 1670-5	11.5	134
146	High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. <i>Nano Letters</i> , 2007 , 7, 1914-8	11.5	309
145	Multifunctional layer-by-layer carbon nanotubepolyelectrolyte thin films for strain and corrosion sensing. <i>Smart Materials and Structures</i> , 2007 , 16, 429-438	3.4	218
144	Polyelectrolyte-Clay-Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture. <i>Advanced Functional Materials</i> , 2007 , 17, 2701-2709	15.6	46
143	Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay and L-3,4-Dihydroxyphenylalanine Polymer. <i>Advanced Materials</i> , 2007 , 19, 949-955	24	189
142	High-Performance Nanostructured Membrane Electrode Assemblies for Fuel Cells Made by Layer-By-Layer Assembly of Carbon Nanocolloids. <i>Advanced Materials</i> , 2007 , 19, 3859-3864	24	100
141	Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 83, 1-9	5.4	15
140	Thermometer design at the nanoscale. <i>Nano Today</i> , 2007 , 2, 48-51	17.9	163
139	Ultrasound-triggered release from multilayered capsules. <i>Small</i> , 2007 , 3, 804-8	11	123
138	Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. <i>Nature Materials</i> , 2007 , 6, 291-5	27	296
137	Hydrothermal Synthesis of CdSe Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 4358-4362	3.9	40
136	Photoacoustic imaging of early inflammatory response using gold nanorods. <i>Applied Physics Letters</i> , 2007 , 90, 223901	3.4	122

135	Passive wireless strain and pH sensing using carbon nanotube-gold nanocomposite thin films 2007,		12
134	Functionalized gold nanorods for molecular optoacoustic imaging 2007 , 6437, 117		
133	Gold nanoparticles with stable yellow-green luminescence. <i>International Journal of Nanotechnology</i> , 2007 , 4, 239	1.5	10
132	Gold nano-rods as a targeting contrast agent for photoacoustic imaging 2007,		1
131	Theory of plasmon-enhanced FEster energy transfer in optically excited semiconductor and metal nanoparticles. <i>Physical Review B</i> , 2007 , 76,	3.3	220
130	Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. <i>Journal of Applied Physics</i> , 2007 , 102, 064701	2.5	299
129	Layer-by-layer assembled films of cellulose nanowires with antireflective properties. <i>Langmuir</i> , 2007 , 23, 7901-6	4	154
128	Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. <i>Nano Letters</i> , 2007 , 7, 1224-31	11.5	133
127	Ultrastrong and stiff layered polymer nanocomposites. <i>Science</i> , 2007 , 318, 80-3	33.3	1322
126	Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. <i>Nanoscale Research Letters</i> , 2006 , 1, 84-90	5	493
125	Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with field-enhanced light absorption. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4819-23	16.4	108
124	Bioconjugated Ag Nanoparticles and CdTe Nanowires: Metamaterials with Field-Enhanced Light Absorption. <i>Angewandte Chemie</i> , 2006 , 118, 4937-4941	3.6	18
123	Mirror-Like Photoconductive Layer-by-Layer Thin Films of Te Nanowires: The Fusion of Semiconductor, Metal, and Insulator Properties. <i>Advanced Materials</i> , 2006 , 18, 518-522	24	101
122	Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. <i>Advanced Materials</i> , 2006 , 18, 3203-3224	24	1138
121	Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes. <i>Advanced Materials</i> , 2006 , 18, 2975-2979	24	130
120	Metallic nanoparticles as optoacoustic contrast agents for medical imaging 2006 , 6086, 155		11
119	Monte carlo computer simulation of chain formation from nanoparticles. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7500-7	3.4	61
118	Anisotropic calcium phosphate nanoparticles coated with 2-carboxyethylphosphonic acid. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3964		13

117	Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3558		69
116	Fabry-Perot fringes and their application to study the film growth, chain rearrangement, and erosion of hydrogen-bonded PVPON/PAA films. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13484-90	3.4	61
115	Spontaneous CdTe> alloy> CdS transition of stabilizer-depleted CdTe nanoparticles induced by EDTA. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7036-42	16.4	38
114	On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12211-7	3.4	81
113	Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: from particles and rods to checkmarks, X-marks, and other unusual shapes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6730-6	16.4	86
112	CNT-CdTe versatile donor-acceptor nanohybrids. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2315-23	16.4	212
111	Mechanical-electrical characterization of carbon-nanotube thin films for structural monitoring applications 2006 ,		1
110	Colloidal quantum dots as optoelectronic elements 2006 , 6127, 131		1
109	Structural diversity in binary nanoparticle superlattices. <i>Nature</i> , 2006 , 439, 55-9	50.4	1776
108	Multilayer composites from vapor-grown carbon nano-fibers. <i>Composites Science and Technology</i> , 2006 , 66, 1174-1181	8.6	33
107	Electrical and optical properties of colloidal semiconductor nanocrystals in aqueous environments. <i>Superlattices and Microstructures</i> , 2006 , 40, 38-44	2.8	17
106	ExcitonPlasmon Interaction and Hybrid Excitons in SemiconductorMetal Nanoparticle Assemblies. <i>Nano Letters</i> , 2006 , 6, 984-994	11.5	446
105	Self-assembly of CdTe nanocrystals into free-floating sheets. <i>Science</i> , 2006 , 314, 274-8	33.3	772
104	A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. <i>Chemistry of Materials</i> , 2005 , 17, 4918-4924	9.6	86
103	Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade Fister resonance energy transfer and energy channeling. <i>Nano Letters</i> , 2005 , 5, 2063-9	11.5	146
102	Single-walled carbon nanotube combing during layer-by-layer assembly: from random adsorption to aligned composites. <i>Langmuir</i> , 2005 , 21, 9381-5	4	79
101	Covalent Cross-Linked Polymer/Single-Wall Carbon Nanotube Multilayer Films. <i>Chemistry of Materials</i> , 2005 , 17, 2131-2135	9.6	70
100	Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. <i>Langmuir</i> , 2005 , 21, 11915-21	4	228

99	Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3463-72	16.4	332
98	Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. <i>Nano Letters</i> , 2005 , 5, 243-8	11.5	90
97	Monte Carlo simulation of linear aggregate formation from CdTe nanoparticles. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2005 , 13, 389-399	2	15
96	Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. <i>Biomacromolecules</i> , 2005 , 6, 2914-8	6.9	223
95	What is the effective charge of TGA-stabilized CdTe nanocolloids?. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7322-3	16.4	39
94	Nanosized inorganic/organic composites for solar energy conversion. <i>Journal of Materials Chemistry</i> , 2005 , 15, 114		58
93	Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. <i>Biomaterials</i> , 2005 , 26, 5581-5	15.6	42
92	Nanoparticle assemblies with molecular springs: a nanoscale thermometer. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7439-42	16.4	163
91	Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. <i>Angewandte Chemie</i> , 2005 , 117, 7605-7608	3.6	66
90	Inverted-Colloidal-Crystal Hydrogel Matrices as Three-Dimensional Cell Scaffolds. <i>Advanced Functional Materials</i> , 2005 , 15, 725-731	15.6	112
89	Spontaneous Transformation of Stabilizer-Depleted Binary Semiconductor Nanoparticles into Selenium and Tellurium Nanowires. <i>Advanced Materials</i> , 2005 , 17, 358-363	24	133
88	One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. <i>Advanced Materials</i> , 2005 , 17, 951-962	24	716
87	Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding Films as a Biocompatible Platform for Neuroprosthetic Implants. <i>Advanced Materials</i> , 2005 , 17, 2663-2670	24	147
86	Bioapplication of nanosemiconductors. <i>Materials Today</i> , 2005 , 8, 20-31	21.8	50
85	Cell distribution profiles in three-dimensional scaffolds with inverted-colloidal-crystal geometry: modeling and experimental investigations. <i>Small</i> , 2005 , 1, 1208-14	11	27
84	Assembly of Nanomaterials using Polymers and Biomaterials: Sensing and Electronic Applications. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 901, 1		1
83	Organization of Nanoparticles and Nanowires in Electronic Devices 2005 , 3-73		1
82	Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines. <i>Australian Journal of Chemistry</i> , 2005 , 58, 713	1.2	2

(2004-2004)

81	Microsphere whispering-gallery-mode laser using HgTe quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 6101-6103	3.4	75
80	Organization of Layer-By-Layer Assembled Nanocomposites 2004 , 273-301		
79	Corrosion protection with synergistic LBL/Ormosil nanostructured thin films. <i>International Journal of Nanotechnology</i> , 2004 , 1, 347	1.5	16
78	Nanoparticles, molecular biosensors, and multispectral confocal microscopy. <i>Journal of Molecular Histology</i> , 2004 , 35, 555-64	3.3	13
77	Self-assembly: From nanoscale to microscale colloids. <i>AICHE Journal</i> , 2004 , 50, 2978-2985	3.6	216
76	Ring R ibbon Transition and Parallel Alignment in SWNT Films on Polyelectrolytes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8770-8772	3.4	15
75	Inverted colloidal crystals as three-dimensional cell scaffolds. <i>Langmuir</i> , 2004 , 20, 7887-92	4	136
74	Investigation of transversal conductance in semiconductor CdTe nanowires with and without a coaxial silica shell. <i>Langmuir</i> , 2004 , 20, 1016-20	4	45
73	Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM. <i>Nano Letters</i> , 2004 , 4, 1637-1641	11.5	42
72	SiO2-Coated CdTe Nanowires: Bristled Nano Centipedes. <i>Nano Letters</i> , 2004 , 4, 225-231	11.5	74
71	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15461-15469	3.4	254
70	Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains. Journal of Physical Chemistry B, 2004 , 108, 6927-6931	3.4	134
69	Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies. <i>Nano Letters</i> , 2004 , 4, 1889-1895	11.5	243
68	Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. <i>Molecular Imaging and Biology</i> , 2004 , 6, 341-9	3.8	237
67	Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14340-1	16.4	63
66	Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon E xciton Interactions, Luminescence Enhancement, and Collective Effects. <i>Nano Letters</i> , 2004 , 4, 2323-2330	11.5	338
65	Designing ultrastrong materials for space applications 2004 , 5166, 228		
64	Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells 2004 ,		9

63	Bioconjugated gold nanoparticles as a contrast agent for detection of small tumors 2003,		11
62	Nanostructured artificial nacre. <i>Nature Materials</i> , 2003 , 2, 413-8	27	1225
61	Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. Journal of the American Chemical Society, 2003 , 125, 2830-1	16.4	178
60	Zwitterionic Acceptor Moieties: Small Reorganization Energy and Unique Stabilization of Charge Transfer Products [] Journal of Physical Chemistry B, 2003, 107, 7293-7298	3.4	29
59	Preparation of Nanoparticle Coatings on Surfaces of Complex Geometry. <i>Nano Letters</i> , 2003 , 3, 173-177	7 11.5	88
58	Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LBL Films. <i>Nano Letters</i> , 2003 , 3, 1177-1182	11.5	146
57	Biomaterials by Design: Layer-By-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 Nanoshells for Neurochemical Monitoring. <i>Advanced Functional Materials</i> , 2002 , 12, 255	15.6	140
56	IIIVI semiconductor nanocrystals in thin films and colloidal crystals. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 202, 135-144	5.1	47
55	Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. <i>Nature Materials</i> , 2002 , 1, 190-4	27	858
54	Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles: Control of Interparticle Interactions. <i>Langmuir</i> , 2002 , 18, 3694-3697	4	376
53	Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. <i>Science</i> , 2002 , 297, 237-40	33.3	1677
52	CdS nanoparticles modified to chalcogen sites: new supramolecular complexes, butterfly bridging, and related optical effects. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3980-92	16.4	55
51	Quantum dot on a rope. Journal of the American Chemical Society, 2002, 124, 2448-9	16.4	80
50	Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. <i>Nano Letters</i> , 2002 , 2, 817-8	3 22 .5	459
49	Semiconductor Nanoparticles on Solid Substrates: Film Structure, Intermolecular Interactions, and Polyelectrolyte Effects. <i>Langmuir</i> , 2002 , 18, 7035-7040	4	72
48	Photoactive Nanowires in Fullerenefferrocene Dyad Polyelectrolyte Multilayers. <i>Nano Letters</i> , 2002 , 2, 775-780	11.5	43
47	Layer-By-Layer Assembly of Collagen Thin Films: Controlled Thickness and Biocompatibility. <i>Biomedical Microdevices</i> , 2001 , 3, 301-306	3.7	48
46	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF 2001 , 189-237		25

45	Nonlinear magneto-optical Kerr effect in hyper-Rayleigh scattering from layer-by-layer assembled films of yttrium iron garnet nanoparticles. <i>Applied Physics Letters</i> , 2001 , 79, 1309-1311	3.4	21
44	Two modes of linear layer-by-layer growth of nanoparticlepolylectrolyte multilayers and different interactions in the layer-by-layer deposition. <i>Journal of the American Chemical Society</i> , 2001 , 123, 1101-	10 ^{6.4}	257
43	Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles. <i>Journal of Applied Physics</i> , 2001 , 89, 1120-1129	2.5	172
42	Nanorainbows: graded semiconductor films from quantum dots. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7738-9	16.4	265
41	In 2S3 Nanocolloids with Excitonic Emission: In 2S3 vs CdS Comparative Study of Optical and Structural Characteristics. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7490-7498	3.4	88
40	AlbumintIdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. <i>Nano Letters</i> , 2001 , 1, 281-286	11.5	393
39	Ordered Layered Assemblies of Nanoparticles. MRS Bulletin, 2001, 26, 992-997	3.2	80
38	Stepwise Assembled Photoactive Films Containing Donor-Linked Fullerenes. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 3905-3909	16.4	68
37	Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission. <i>Chemistry of Materials</i> , 2000 , 12, 1526-1528	9.6	130
36	Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals. <i>Chemistry of Materials</i> , 2000 , 12, 2721-2726	9.6	208
35	One-Pot Synthesis of Ag@TiO2CoreBhell Nanoparticles and Their Layer-by-Layer Assembly. <i>Langmuir</i> , 2000 , 16, 2731-2735	4	299
34	Raisin BunEType Composite Spheres of Silica and Semiconductor Nanocrystals. <i>Chemistry of Materials</i> , 2000 , 12, 2676-2685	9.6	386
33	Free-Standing Layer-by-Layer Assembled Films of Magnetite Nanoparticles. <i>Langmuir</i> , 2000 , 16, 5530-5.	543	270
32	Stratified Assemblies of Magnetite Nanoparticles and Montmorillonite Prepared by the Layer-by-Layer Assembly. <i>Langmuir</i> , 2000 , 16, 3941-3949	4	154
31	One- and Two-Dimensional Arrays of Magnetic Nanoparticles by the Langmuir B lodgett Technique. <i>Advanced Materials</i> , 1999 , 11, 388-392	24	54
30	Layer-By-Layer Assembly of Core-Shell Magnetite Nanoparticles: Effect of Silica Coating on Interparticle Interactions and Magnetic Properties. <i>Advanced Materials</i> , 1999 , 11, 1006-1010	24	184
29	Conformation of Ethylhexanoate Stabilizer on the Surface of CdS Nanoparticles. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 9854-9858	3.4	48
28	Surface Modification of CdS Nanoparticles with MoS42-: A Case Study of NanoparticleModifier Electronic Interaction. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 9859-9866	3.4	21

27	Layer-by-layer self-assembly: The contribution of hydrophobic interactions. <i>Scripta Materialia</i> , 1999 , 12, 789-796		239
26	Kinetics of Photoinduced Charge Transfer at Microscopic and Macroscopic Interfaces <i>Analytical Sciences</i> , 1999 , 15, 3-16	1.7	6
25	Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2 Coating by Microwave Irradiation. <i>Langmuir</i> , 1998 , 14, 6430-6435	4	155
24	Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycation Montmorillonite Ultrathin Films. <i>Journal of the American Chemical Society</i> , 1997 , 119, 6821-6832	16.4	231
23	Self-Assembly of Nanostructured Semiconductor Films 1996 , 557-577		2
22	Coupled Composite CdSIIdSe and CoreBhell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 8927-8939		205
21	Ultrathin graphite oxidepolyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. <i>Advanced Materials</i> , 1996 , 8, 637-641	24	523
20	Mono- and multiparticulate Langmuir-Blodgett films prepared from surfactant-stabilized silver particles. <i>Materials Science and Engineering C</i> , 1995 , 3, 149-152	8.3	7
19	Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13065-13069		696
18	Langmuir-Blodgett Films Prepared from Ferroelectric Lead Zirconium Titanate Particles. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 12375-12378		14
17	Formation of Thin Films of Platinum, Palladium, and Mixed Platinum: Palladium Nanocrystallites by the Langmuir Monolayer Technique. <i>Chemistry of Materials</i> , 1995 , 7, 1112-1116	9.6	24
16	Ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 673		10
15	Morphology-dependent spectroelectrochemical behavior of pbs nanoparticulate films grown under surfactant monolayers. <i>Advanced Materials</i> , 1994 , 6, 959-962	24	12
14	Monoparticulate Layers of Titanium Dioxide Nanocrystallites with Controllable Interparticle Distances. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 8827-8830		96
13	Morphology-Dependent Spectroelectrochemical Behavior of PbS Nanoparticulate Films Grown Under Surfactant Monolayers. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 358, 259		
12	Two-dimensional silver electrocrystallization under monolayers spread on aqueous silver nitrate. <i>Langmuir</i> , 1993 , 9, 3710-3716	4	47
11	Cadmium sulfide particles in organomontmorillonite complexes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1993 , 71, 317-326	5.1	21
10	Nature of the processes of charge-carrier generation at ITIES by the photoexcitation of porphyrins. Journal of Electroanalytical Chemistry, 1992 , 338, 99-124	4.1	13

LIST OF PUBLICATIONS

9	Computer analysis of photoinduced charge transfer at the ITIES in protoporphyrinquinone systems. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 341, 47-60	4.1	10
8	A photoelectrochemical effect at the interface of immiscible electrolyte solutions. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 285, 223-240		26
7	Emerging Trends in Chiral Inorganic Nanostructures. Israel Journal of Chemistry,	3.4	2
6	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> ,2102080	15.6	2
5	Struct2Graph: A graph attention network for structure based predictions of protein-protein interaction	ns	1
4	Nanoparticle Films: Dimensionally Graded Semiconductor3125-3131		
3	Nanoparticle Films: Dimensionally Graded Semiconductor3125-3131 Self-Assembly of Earth-Abundant Supraparticles with Chiral Interstices for Enantioselective Photocatalysis. <i>ACS Energy Letters</i> ,1405-1412	20.1	2

Layer-by-Layer Assembly of Multifunctional Carbon Nanotube Thin Films305-319