Nicholas A Kotov

List of Publications by Citations

Source: https://exaly.com/author-pdf/5680992/nicholas-a-kotov-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

458 51,949 217 122 h-index g-index citations papers 7.78 57,388 13.2 537 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
458	Structural diversity in binary nanoparticle superlattices. <i>Nature</i> , 2006 , 439, 55-9	50.4	1776
457	Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. <i>Science</i> , 2002 , 297, 237-40	33.3	1677
456	Ultrastrong and stiff layered polymer nanocomposites. <i>Science</i> , 2007 , 318, 80-3	33.3	1322
455	Nanostructured artificial nacre. <i>Nature Materials</i> , 2003 , 2, 413-8	27	1225
454	Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. <i>Advanced Materials</i> , 2006 , 18, 3203-3224	24	1138
453	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
452	Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. <i>Nature Materials</i> , 2002 , 1, 190-4	27	858
451	Three-dimensional cell culture matrices: state of the art. <i>Tissue Engineering - Part B: Reviews</i> , 2008 , 14, 61-86	7.9	790
450	Self-assembly of CdTe nanocrystals into free-floating sheets. <i>Science</i> , 2006 , 314, 274-8	33.3	772
449	One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. <i>Advanced Materials</i> , 2005 , 17, 951-962	24	716
448	Diverse Applications of Nanomedicine. <i>ACS Nano</i> , 2017 , 11, 2313-2381	16.7	714
447	Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13065-13069		696
446	Targeted gold nanoparticles enable molecular CT imaging of cancer. <i>Nano Letters</i> , 2008 , 8, 4593-6	11.5	640
445	Stretchable nanoparticle conductors with self-organized conductive pathways. <i>Nature</i> , 2013 , 500, 59-63	50.4	613
444	Ultrathin graphite oxidepolyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. <i>Advanced Materials</i> , 1996 , 8, 637-641	24	523
443	Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. <i>Nanoscale Research Letters</i> , 2006 , 1, 84-90	5	493
442	Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. <i>Nature Materials</i> , 2012 , 11, 1065-73	27	482

(2016-2008)

441	Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires. <i>Accounts of Chemical Research</i> , 2008 , 41, 1831-41	24.3	476	
440	Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. <i>Nano Letters</i> , 2002 , 2, 817-8	3 22 .5	459	
439	Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. <i>Nano Letters</i> , 2008 , 8, 4151-7	11.5	447	
438	ExcitonPlasmon Interaction and Hybrid Excitons in SemiconductorMetal Nanoparticle Assemblies. <i>Nano Letters</i> , 2006 , 6, 984-994	11.5	446	
437	Chiral Inorganic Nanostructures. <i>Chemical Reviews</i> , 2017 , 117, 8041-8093	68.1	435	
436	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. <i>Nature Nanotechnology</i> , 2011 , 6, 580-7	28.7	429	
435	Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004	24	422	
434	AlbumintIdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. <i>Nano Letters</i> , 2001 , 1, 281-286	11.5	393	
433	A kirigami approach to engineering elasticity in nanocomposites through patterned defects. <i>Nature Materials</i> , 2015 , 14, 785-9	27	389	
432	Raisin Bun Type Composite Spheres of Silica and Semiconductor Nanocrystals. <i>Chemistry of Materials</i> , 2000 , 12, 2676-2685	9.6	386	
431	Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8157-61	11.5	383	
430	Attomolar DNA detection with chiral nanorod assemblies. <i>Nature Communications</i> , 2013 , 4, 2689	17.4	381	
429	Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles: Control of Interparticle Interactions. <i>Langmuir</i> , 2002 , 18, 3694-3697	4	376	
428	Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon E xciton Interactions, Luminescence Enhancement, and Collective Effects. <i>Nano Letters</i> , 2004 , 4, 2323-2330	11.5	338	
427	Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano, 2011, 5, 6945-54	16.7	337	
426	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. <i>Chemical Reviews</i> , 2017 , 117, 1826-1914	68.1	333	
425	Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3463-72	16.4	332	
424	Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. <i>Journal of the American</i> Chamical Society 2016, 139, 206, 13	16.4	329	

423	Nonadditivity of nanoparticle interactions. <i>Science</i> , 2015 , 350, 1242477	33.3	327
422	Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15114-21	16.4	316
421	High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. <i>Nano Letters</i> , 2007 , 7, 1914-8	11.5	309
420	Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. <i>Science</i> , 2010 , 327, 1355-9	33.3	303
419	Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. <i>Journal of Applied Physics</i> , 2007 , 102, 064701	2.5	299
418	One-Pot Synthesis of Ag@TiO2CoreBhell Nanoparticles and Their Layer-by-Layer Assembly. <i>Langmuir</i> , 2000 , 16, 2731-2735	4	299
417	Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. <i>Nature Materials</i> , 2007 , 6, 291-5	27	296
416	Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. <i>Nano Letters</i> , 2007 , 7, 1123-8	11.5	282
415	Free-Standing Layer-by-Layer Assembled Films of Magnetite Nanoparticles. <i>Langmuir</i> , 2000 , 16, 5530-5	53/3	270
414	Chemistry. Inorganic nanoparticles as protein mimics. <i>Science</i> , 2010 , 330, 188-9	33.3	265
413	Nanorainbows: graded semiconductor films from quantum dots. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7738-9	16.4	265
412	Two modes of linear layer-by-layer growth of nanoparticlepolylectrolyte multilayers and different interactions in the layer-by-layer deposition. <i>Journal of the American Chemical Society</i> , 2001 , 123, 1101-	10 ^{6.4}	257
411	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15461-15469	3.4	254
410			
	Chiral templating of self-assembling nanostructures by circularly polarized light. <i>Nature Materials</i> , 2015 , 14, 66-72	27	251
409		27 11	251
	2015 , 14, 66-72		
409	2015, 14, 66-72 In vitro toxicity testing of nanoparticles in 3D cell culture. <i>Small</i> , 2009, 5, 1213-21 Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different	11	244

(2000-1999)

405	Layer-by-layer self-assembly: The contribution of hydrophobic interactions. <i>Scripta Materialia</i> , 1999 , 12, 789-796		239
404	Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. <i>Molecular Imaging and Biology</i> , 2004 , 6, 341-9	3.8	237
403	Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5472-5	16.4	231
402	Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycation Montmorillonite Ultrathin Films. <i>Journal of the American Chemical Society</i> , 1997 , 119, 6821-6832	16.4	231
401	Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. <i>ACS Nano</i> , 2018 , 12, 6378-6388	16.7	230
400	Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. <i>Langmuir</i> , 2005 , 21, 11915-21	4	228
399	A dendrite-suppressing composite ion conductor from aramid nanofibres. <i>Nature Communications</i> , 2015 , 6, 6152	17.4	225
398	Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. <i>Biomacromolecules</i> , 2005 , 6, 2914-8	6.9	223
397	Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. <i>Nano Letters</i> , 2009 , 9, 4147-52	11.5	222
396	Theory of plasmon-enhanced Fister energy transfer in optically excited semiconductor and metal nanoparticles. <i>Physical Review B</i> , 2007 , 76,	3.3	220
395	Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6006-13	16.4	218
394	Multifunctional layer-by-layer carbon nanotubepolyelectrolyte thin films for strain and corrosion sensing. <i>Smart Materials and Structures</i> , 2007 , 16, 429-438	3.4	218
393	Chiral Graphene Quantum Dots. ACS Nano, 2016 , 10, 1744-55	16.7	216
392	Self-assembly: From nanoscale to microscale colloids. <i>AICHE Journal</i> , 2004 , 50, 2978-2985	3.6	216
391	Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5110-5	16.4	213
390	CNT-CdTe versatile donor-acceptor nanohybrids. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2315-23	16.4	212
389	Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. <i>Nano Letters</i> , 2009 , 9, 2153-9	11.5	208
388	Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals. <i>Chemistry of Materials</i> , 2000 , 12, 2721-2726	9.6	208

387	Coupled Composite CdSIIdSe and CoreBhell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 8927-8939		205
386	Dynamic nanoparticle assemblies. Accounts of Chemical Research, 2012, 45, 1916-26	24.3	198
385	Exponential growth of LBL films with incorporated inorganic sheets. <i>Nano Letters</i> , 2008 , 8, 1762-70	11.5	196
384	Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay and L-3,4-Dihydroxyphenylalanine Polymer. <i>Advanced Materials</i> , 2007 , 19, 949-955	24	189
383	Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. <i>Chemical Society Reviews</i> , 2013 , 42, 3114-26	58.5	188
382	The state of nanoparticle-based nanoscience and biotechnology: progress, promises, and challenges. <i>ACS Nano</i> , 2012 , 6, 8468-83	16.7	188
381	Layer-By-Layer Assembly of Core-Shell Magnetite Nanoparticles: Effect of Silica Coating on Interparticle Interactions and Magnetic Properties. <i>Advanced Materials</i> , 1999 , 11, 1006-1010	24	184
380	Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. <i>Journal of the American Chemical Society</i> , 2003 , 125, 2830-1	16.4	178
379	Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. <i>Nano Letters</i> , 2009 , 9, 273-8	11.5	174
378	Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles. <i>Journal of Applied Physics</i> , 2001 , 89, 1120-1129	2.5	172
377	Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. <i>Nature Materials</i> , 2016 , 15, 461-8	27	169
376	Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. <i>Journal of Nondestructive Evaluation</i> , 2009 , 28, 9-25	2.1	166
375	Nanoparticle assembly for 1D and 2D ordered structures. Soft Matter, 2009, 5, 1146	3.6	166
374	Chiral plasmonics of self-assembled nanorod dimers. Scientific Reports, 2013, 3, 1934	4.9	165
373	Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. <i>ACS Nano</i> , 2011 , 5, 3319-25	16.7	165
372	Thermometer design at the nanoscale. <i>Nano Today</i> , 2007 , 2, 48-51	17.9	163
371	Nanoparticle assemblies with molecular springs: a nanoscale thermometer. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7439-42	16.4	163
370	Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. <i>Langmuir</i> , 2008 , 24, 568-74	4	161

(2005-1998)

369	Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2 Coating by Microwave Irradiation. <i>Langmuir</i> , 1998 , 14, 6430-6435	4	155
368	Layer-by-layer assembled films of cellulose nanowires with antireflective properties. <i>Langmuir</i> , 2007 , 23, 7901-6	4	154
367	Stratified Assemblies of Magnetite Nanoparticles and Montmorillonite Prepared by the Layer-by-Layer Assembly. <i>Langmuir</i> , 2000 , 16, 3941-3949	4	154
366	High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. <i>ACS Nano</i> , 2008 , 2, 928-38	16.7	151
365	Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding Films as a Biocompatible Platform for Neuroprosthetic Implants. <i>Advanced Materials</i> , 2005 , 17, 2663-2670	24	147
364	Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade FEster resonance energy transfer and energy channeling. <i>Nano Letters</i> , 2005 , 5, 2063-9	11.5	146
363	Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LBL Films. <i>Nano Letters</i> , 2003 , 3, 1177-1182	11.5	146
362	Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. <i>Nano Letters</i> , 2014 , 14, 3908-13	11.5	145
361	Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics. <i>Chemistry of Materials</i> , 2007 , 19, 5467-5474	9.6	145
360	SERS-active gold lace nanoshells with built-in hotspots. <i>Nano Letters</i> , 2010 , 10, 4013-9	11.5	142
359	Biomaterials by Design: Layer-By-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 Nanoshells for Neurochemical Monitoring. <i>Advanced Functional Materials</i> , 2002 , 12, 255	15.6	140
358	Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. <i>ACS Nano</i> , 2015 , 9, 9097-105	16.7	139
357	Origami and Kirigami Nanocomposites. ACS Nano, 2017, 11, 7587-7599	16.7	139
356	Inverted colloidal crystals as three-dimensional cell scaffolds. <i>Langmuir</i> , 2004 , 20, 7887-92	4	136
355	Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. <i>Nano Letters</i> , 2007 , 7, 1670-5	11.5	134
354	Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains. Journal of Physical Chemistry B, 2004 , 108, 6927-6931	3.4	134
353	Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. <i>Nano Letters</i> , 2007 , 7, 1224-31	11.5	133
352	Spontaneous Transformation of Stabilizer-Depleted Binary Semiconductor Nanoparticles into Selenium and Tellurium Nanowires. <i>Advanced Materials</i> , 2005 , 17, 358-363	24	133

351	Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness. <i>ACS Nano</i> , 2009 , 3, 1711-22	16.7	131
350	Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes. <i>Advanced Materials</i> , 2006 , 18, 2975-2979	24	130
349	Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission. <i>Chemistry of Materials</i> , 2000 , 12, 1526-1528	9.6	130
348	Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). <i>Nanoscale</i> , 2018 , 10, 4927-4939	7.7	129
347	Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit. <i>ACS Nano</i> , 2010 , 4, 3725-34	16.7	128
346	Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. <i>Nano Letters</i> , 2007 , 7, 513-9	11.5	128
345	Abiotic tooth enamel. <i>Nature</i> , 2017 , 543, 95-98	50.4	127
344	The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Mflwald. <i>ACS Nano</i> , 2019 , 13, 6151-6169	16.7	127
343	Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. <i>Biomaterials</i> , 2009 , 30, 4687	-94 5.6	125
342	Reactive Aramid Nanostructures as High-Performance Polymeric Building Blocks for Advanced Composites. <i>Advanced Functional Materials</i> , 2013 , 23, 2072-2080	15.6	124
341	Ultrasound-triggered release from multilayered capsules. Small, 2007, 3, 804-8	11	123
340	Chiromagnetic nanoparticles and gels. <i>Science</i> , 2018 , 359, 309-314	33.3	122
339	Photoacoustic imaging of early inflammatory response using gold nanorods. <i>Applied Physics Letters</i> , 2007 , 90, 223901	3.4	122
338	Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors. Journal of Intelligent Material Systems and Structures, 2008, 19, 747-764	2.3	121
337	Chronic in vivo stability assessment of carbon fiber microelectrode arrays. <i>Journal of Neural Engineering</i> , 2016 , 13, 066002	5	121
336	Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. <i>Nature Chemistry</i> , 2018 , 10, 821-830	17.6	120
335	Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies. <i>ACS Nano</i> , 2012 , 6, 8357-65	16.7	119
334	Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1050-1054		118

(2017-2009)

333	In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. <i>Biomaterials</i> , 2009 , 30, 1071-9	15.6	115
332	Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. <i>ACS Nano</i> , 2013 , 7, 4818-29	16.7	113
331	Crown ether assembly of gold nanoparticles: melamine sensor. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2032-7	11.8	113
330	Graphene-based multilayers: Critical evaluation of materials assembly techniques. <i>Nano Today</i> , 2012 , 7, 430-447	17.9	112
329	Inverted-Colloidal-Crystal Hydrogel Matrices as Three-Dimensional Cell Scaffolds. <i>Advanced Functional Materials</i> , 2005 , 15, 725-731	15.6	112
328	Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5326-9	16.4	111
327	Nanostructured thin films made by dewetting method of layer-by-layer assembly. <i>Nano Letters</i> , 2007 , 7, 3266-73	11.5	110
326	Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with field-enhanced light absorption. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4819-23	16.4	108
325	Chiral plasmonic nanostructures on achiral nanopillars. <i>Nano Letters</i> , 2013 , 13, 5277-83	11.5	107
324	Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. <i>Advanced Materials</i> , 2016 , 28, 5907-15	24	107
323	Nanoparticle-based environmental sensors. <i>Materials Science and Engineering Reports</i> , 2010 , 70, 265-27	430.9	106
322	Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials. <i>Langmuir</i> , 2008 , 24, 13833-7	4	106
321	Insertion of linear 8.4 h diameter 16 channel carbon fiber electrode arrays for single unit recordings. <i>Journal of Neural Engineering</i> , 2015 , 12, 046009	5	104
320	Universal Synthesis of Single-Phase Pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2567-2573	3.8	103
319	Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. <i>Nano Letters</i> , 2009 , 9, 4012-8	11.5	103
318	Mirror-Like Photoconductive Layer-by-Layer Thin Films of Te Nanowires: The Fusion of Semiconductor, Metal, and Insulator Properties. <i>Advanced Materials</i> , 2006 , 18, 518-522	24	101
317	High-Performance Nanostructured Membrane Electrode Assemblies for Fuel Cells Made by Layer-By-Layer Assembly of Carbon Nanocolloids. <i>Advanced Materials</i> , 2007 , 19, 3859-3864	24	100
316	Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. <i>Science Advances</i> , 2017 , 3, e1601159	14.3	96

315	Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. <i>Advanced Materials</i> , 2010 , 22, 2338-42	24	96
314	Monoparticulate Layers of Titanium Dioxide Nanocrystallites with Controllable Interparticle Distances. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 8827-8830		96
313	Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. <i>Nanotechnology</i> , 2008 , 19, 095101	3.4	94
312	Water-Rich Biomimetic Composites with Abiotic Self-Organizing Nanofiber Network. <i>Advanced Materials</i> , 2018 , 30, 1703343	24	94
311	Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 14359-63	3.4	93
310	Single particle plasmon spectroscopy of silver nanowires and gold nanorods. <i>Nano Letters</i> , 2008 , 8, 3200	0 14 .5	92
309	Inkjet deposition of layer-by-layer assembled films. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14496-502	16.4	91
308	Branched Aramid Nanofibers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11744-11748	16.4	90
307	Charge Transport Dilemma of Solution-Processed Nanomaterials. <i>Chemistry of Materials</i> , 2014 , 26, 134-	15.8	90
306	Unknown aspects of self-assembly of PbS microscale superstructures. <i>ACS Nano</i> , 2012 , 6, 3800-12	16.7	90
305	Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. <i>Nano Letters</i> , 2005 , 5, 243-8	11.5	90
304	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. <i>Advanced Functional Materials</i> , 2016 , 26, 8435-8445	15.6	89
303	Preparation of Nanoparticle Coatings on Surfaces of Complex Geometry. <i>Nano Letters</i> , 2003 , 3, 173-177	11.5	88
302	In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7490-7498	3.4	88
301	Anomalous dispersions of 'hedgehog' particles. <i>Nature</i> , 2015 , 517, 596-9	50.4	87
300	Formation and assembly-disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1860-72	16.4	87
299	Polymer/clay and polymer/carbon nanotube hybrid organicIhorganic multilayered composites made by sequential layering of nanometer scale films. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 2835-	2851	87
298	Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. <i>ACS Nano</i> , 2016 , 10, 3248-56	16.7	86

(2020-2005)

297	A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. <i>Chemistry of Materials</i> , 2005 , 17, 4918-4924	9.6	86
296	Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: from particles and rods to checkmarks, X-marks, and other unusual shapes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6730-6	16.4	86
295	Emergence of complexity in hierarchically organized chiral particles. Science, 2020, 368, 642-648	33.3	85
294	Resolution of oligomeric species during the aggregation of A\mathbb{H}1-40 using (19)F NMR. <i>Biochemistry</i> , 2013 , 52, 1903-12	3.2	85
293	Chiral luminescent CdS nano-tetrapods. Chemical Communications, 2010, 46, 6072-4	5.8	85
292	Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. <i>Experimental Hematology</i> , 2009 , 37, 101-10	3.1	84
291	Nanoscale helices from inorganic materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6775		82
290	Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. <i>Nature Communications</i> , 2014 , 5, 3593	17.4	81
289	Reversible loading and unloading of nanoparticles in "exponentially" growing polyelectrolyte LBL films. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3748-9	16.4	81
288	On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12211-7	3.4	81
287	Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres. <i>Nature Communications</i> , 2016 , 7, 10701	17.4	80
286	Quantum dot on a rope. Journal of the American Chemical Society, 2002, 124, 2448-9	16.4	80
285	Ordered Layered Assemblies of Nanoparticles. MRS Bulletin, 2001, 26, 992-997	3.2	80
284	E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2732-2736	4.9	79
283	Single-walled carbon nanotube combing during layer-by-layer assembly: from random adsorption to aligned composites. <i>Langmuir</i> , 2005 , 21, 9381-5	4	79
282	Environmentally responsive plasmonic nanoassemblies for biosensing. <i>Chemical Society Reviews</i> , 2018 , 47, 4677-4696	58.5	78
281	Transparent conductors from carbon nanotubes LBL-assembled with polymer dopant with Electron transfer. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7450-60	16.4	78
280	Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting. <i>Joule</i> , 2020 , 4, 247-261	27.8	78

279	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5359-5364	11.5	77
278	Intracellular localization of nanoparticle dimers by chirality reversal. <i>Nature Communications</i> , 2017 , 8, 1847	17.4	76
277	Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). <i>Macromolecular Rapid Communications</i> , 2010 , 31, 228-36	4.8	76
276	Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. <i>ACS Photonics</i> , 2015 , 2, 1602-1610	6.3	75
275	Microsphere whispering-gallery-mode laser using HgTe quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 6101-6103	3.4	75
274	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4206-4212	16.4	74
273	SiO2-Coated CdTe Nanowires: Bristled Nano Centipedes. <i>Nano Letters</i> , 2004 , 4, 225-231	11.5	74
272	Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. <i>Physical Review B</i> , 2009 , 80,	3.3	73
271	A Helicene Nanoribbon with Greatly Amplified Chirality. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6235-6239	16.4	73
270	Semiconductor Nanoparticles on Solid Substrates: Film Structure, Intermolecular Interactions, and Polyelectrolyte Effects. <i>Langmuir</i> , 2002 , 18, 7035-7040	4	72
269	Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. <i>Nature Chemistry</i> , 2017 , 9, 287-2	9 4 7.6	71
268	Fuel Cell Membrane Electrode Assemblies Fabricated by Layer-by-Layer Electrostatic Self-Assembly Techniques. <i>Advanced Functional Materials</i> , 2008 , 18, 3003-3009	15.6	71
267	Covalent Cross-Linked Polymer/Single-Wall Carbon Nanotube Multilayer Films. <i>Chemistry of Materials</i> , 2005 , 17, 2131-2135	9.6	70
266	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 641-7	6.4	69
265	Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3558		69
264	Stepwise Assembled Photoactive Films Containing Donor-Linked Fullerenes. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 3905-3909	16.4	68
263	Stretchable batteries with gradient multilayer conductors. <i>Science Advances</i> , 2019 , 5, eaaw1879	14.3	67
262	Chiral Ceramic Nanoparticles and Peptide Catalysis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13701-13712	16.4	67

(2005-2012)

261	Layered nanocomposites from gold nanoparticles for neural prosthetic devices. <i>Nano Letters</i> , 2012 , 12, 3391-8	11.5	67
260	Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. <i>Angewandte Chemie</i> , 2005 , 117, 7605-7608	3.6	66
259	Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. <i>Science</i> , 2021 , 371, 1368-1374	33.3	66
258	Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. <i>ACS Nano</i> , 2013 , 7, 7619-29	16.7	65
257	Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. <i>Small</i> , 2009 , 5, 1008-13	11	65
256	LBL assembled laminates with hierarchical organization from nano- to microscale: high-toughness nanomaterials and deformation imaging. <i>ACS Nano</i> , 2009 , 3, 1564-72	16.7	64
255	The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites. <i>Macromolecules</i> , 2009 , 42, 6588-6595	5.5	64
254	Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. <i>Nature Materials</i> , 2019 , 18, 820-826	27	63
253	Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14340-1	16.4	63
252	Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. <i>Advanced Functional Materials</i> , 2014 , 24, 1439-1448	15.6	62
251	Monte carlo computer simulation of chain formation from nanoparticles. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7500-7	3.4	61
250	Fabry-Perot fringes and their application to study the film growth, chain rearrangement, and erosion of hydrogen-bonded PVPON/PAA films. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13484-90	3.4	61
249	Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. <i>Nanotechnology</i> , 2009 , 20, 215602	3.4	60
248	pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter, 2010 , 6, 800-	8 9 7	59
247	Carbon Nanotubes on Polymeric Microcapsules: Free-Standing Structures and Point-Wise Laser Openings. <i>Advanced Functional Materials</i> , 2010 , 20, 3136-3142	15.6	59
246	Aramid nanofiber-reinforced transparent nanocomposites. <i>Journal of Composite Materials</i> , 2015 , 49, 1873-1879	2.7	58
245	Nonexclusive fluorescent sensing for L/D enantiomers enabled by dynamic nanoparticle-nanorod assemblies. <i>Analytical Chemistry</i> , 2012 , 84, 7330-5	7.8	58
244	Nanosized inorganic/organic composites for solar energy conversion. <i>Journal of Materials Chemistry</i> , 2005 , 15, 114		58

243	Kirigami Nanocomposites as Wide-Angle Diffraction Gratings. ACS Nano, 2016, 10, 6156-62	16.7	57
242	Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies. <i>Nano Letters</i> , 2014 , 14, 6799-810	11.5	55
241	CdS nanoparticles modified to chalcogen sites: new supramolecular complexes, butterfly bridging, and related optical effects. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3980-92	16.4	55
240	Subcellular neural probes from single-crystal gold nanowires. <i>ACS Nano</i> , 2014 , 8, 8182-9	16.7	54
239	125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano, 2011 , 5, 8967-73	16.7	54
238	One- and Two-Dimensional Arrays of Magnetic Nanoparticles by the Langmuir B lodgett Technique. <i>Advanced Materials</i> , 1999 , 11, 388-392	24	54
237	Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. <i>Nano Today</i> , 2012 , 7, 6-9	17.9	53
236	Melanin-containing films: growth from dopamine solutions versus layer-by-layer deposition. <i>ChemPhysChem</i> , 2010 , 11, 3299-305	3.2	53
235	Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. <i>Nature Communications</i> , 2018 , 9, 4193	17.4	53
234	Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. <i>ACS Nano</i> , 2013 , 7, 9010-8	16.7	52
233	Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles. <i>Advanced Optical Materials</i> , 2013 , 1, 626-630	8.1	52
232	Diffusional self-organization in exponential layer-by-layer films with micro- and nanoscale periodicity. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7073-7	16.4	52
231	Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. <i>Current Pharmaceutical Design</i> , 2018 , 24, 896-903	3.3	52
230	Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3391-3400	11.5	52
229	Bioapplication of nanosemiconductors. <i>Materials Today</i> , 2005 , 8, 20-31	21.8	50
228	Layer-By-Layer Assembly of Collagen Thin Films: Controlled Thickness and Biocompatibility. <i>Biomedical Microdevices</i> , 2001 , 3, 301-306	3.7	48
227	Conformation of Ethylhexanoate Stabilizer on the Surface of CdS Nanoparticles. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 9854-9858	3.4	48
226	Biomimetic Solid-State Zn Electrolyte for Corrugated Structural Batteries. <i>ACS Nano</i> , 2019 , 13, 1107-11	1 5 6.7	48

(2005-2013)

225	Nanoengineered colloidal probes for Raman-based detection of biomolecules inside living cells. Small, 2013 , 9, 351-6	11	47
224	IIIVI semiconductor nanocrystals in thin films and colloidal crystals. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 202, 135-144	5.1	47
223	Two-dimensional silver electrocrystallization under monolayers spread on aqueous silver nitrate. <i>Langmuir</i> , 1993 , 9, 3710-3716	4	47
222	Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11739-11744	16.4	46
221	Single- and multi-component chiral supraparticles as modular enantioselective catalysts. <i>Nature Communications</i> , 2019 , 10, 4826	17.4	46
220	Polyelectrolyte-Clay-Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture. <i>Advanced Functional Materials</i> , 2007 , 17, 2701-2709	15.6	46
219	Nanocomposite microcontainers. Advanced Materials, 2012, 24, 4597-600	24	45
218	Investigation of transversal conductance in semiconductor CdTe nanowires with and without a coaxial silica shell. <i>Langmuir</i> , 2004 , 20, 1016-20	4	45
217	Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. <i>Tissue Engineering - Part A</i> , 2008 , 14, 1639-49	3.9	43
216	Photoactive Nanowires in Fullerene Herrocene Dyad Polyelectrolyte Multilayers. <i>Nano Letters</i> , 2002 , 2, 775-780	11.5	43
215	Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. <i>PLoS ONE</i> , 2014 , 9, e91360	3.7	42
214	Automated spin-assisted layer-by-layer assembly of nanocomposites. <i>Review of Scientific Instruments</i> , 2009 , 80, 023903	1.7	42
213	Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM. <i>Nano Letters</i> , 2004 , 4, 1637-1641	11.5	42
212	Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. <i>Biomaterials</i> , 2005 , 26, 5581-5	15.6	42
211	Hydrothermal Synthesis of CdSe Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 4358-4362	3.9	40
210	Anti-Biofilm Activity of Graphene Quantum Dots via Self-Assembly with Bacterial Amyloid Proteins. <i>ACS Nano</i> , 2019 , 13, 4278-4289	16.7	39
209	Inductively coupled nanocomposite wireless strain and pH sensors. <i>Smart Structures and Systems</i> , 2008 , 4, 531-548		39
208	What is the effective charge of TGA-stabilized CdTe nanocolloids?. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7322-3	16.4	39

207	Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable near-Infrared Optical Activity. <i>Chemistry of Materials</i> , 2020 , 32, 476-488	9.6	39
206	Media Effect on CdTe Nanowire Growth: Mechanism of Self-Assembly, Ostwald Ripening, and Control of NW Geometry. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 370-377	3.8	38
205	Spontaneous CdTe> alloy> CdS transition of stabilizer-depleted CdTe nanoparticles induced by EDTA. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7036-42	16.4	38
204	Enantiomer-dependent immunological response to chiral nanoparticles <i>Nature</i> , 2022 , 601, 366-373	50.4	36
203	Plasmonic Nanoparticles with Supramolecular Recognition. <i>Advanced Functional Materials</i> , 2020 , 30, 1902082	15.6	36
202	Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. <i>Nature Biomedical Engineering</i> , 2021 , 5, 103-113	19	36
201	Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 33-42	6	35
200	Simultaneously high stiffness and damping in nanoengineered microtruss composites. <i>ACS Nano</i> , 2014 , 8, 3468-75	16.7	35
199	Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods. <i>Biomedical Optics Express</i> , 2011 , 2, 645-57	3.5	35
198	Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. <i>ACS Nano</i> , 2015 , 9, 5009-17	16.7	34
197	Scalable nanopillar arrays with layer-by-layer patterned overt and covert images. <i>Advanced Materials</i> , 2014 , 26, 6119-24	24	34
196	Gold colloids with unconventional angled shapes. <i>Langmuir</i> , 2009 , 25, 11431-5	4	34
195	Biomorphic structural batteries for robotics. Science Robotics, 2020, 5,	18.6	34
194	Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16630-16639	16.4	33
193	Shape-morphing nanocomposite origami. <i>Langmuir</i> , 2014 , 30, 5378-85	4	33
192	Brillouin Light Scattering Investigation of the Mechanical Properties of Layer-by-Layer Assembled Cellulose Nanocrystal Films. <i>Macromolecules</i> , 2010 , 43, 9541-9548	5.5	33
191	Dual-mode imaging with radiolabeled gold nanorods. <i>Journal of Biomedical Optics</i> , 2011 , 16, 051307	3.5	33
190	Multilayer composites from vapor-grown carbon nano-fibers. <i>Composites Science and Technology</i> , 2006 , 66, 1174-1181	8.6	33

(2011-2017)

18	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. <i>Applied Physics Letters</i> , 2017 , 111, 161901	3.4	32	
18	Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions. <i>Nanoscale</i> , 2010 , 2, 2084-90	7.7	32	
18	Phase-pure FeSe(x) (x = 1, 2) nanoparticles with one- and two-photon luminescence. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7189-92	16.4	31	
18	Direct-write maskless lithography of LBL nanocomposite films and its prospects for MEMS technologies. <i>Nanoscale</i> , 2012 , 4, 4393-8	7.7	31	
18	Spontaneous formation of temperature-responsive assemblies by molecular recognition of a #cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide). <i>Soft Matter</i> , 2010 , 6, 610-6	61 3 .6	31	
18.	Free flow electrophoresis for the separation of CdTe nanoparticles. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1390		31	
18	Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications. <i>Langmuir</i> , 2009 , 25, 14093-9	4	30	
18	Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. <i>Small</i> , 2015 , 11, 1320-7	11	29	
18	Zwitterionic Acceptor Moieties: Small Reorganization Energy and Unique Stabilization of Charge Transfer Products [] Journal of Physical Chemistry B, 2003 , 107, 7293-7298	3.4	29	
18	Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15226-15231	16.4	28	
17	9 Synthesis and bioevaluation of Halabeled gold nanorods. <i>Nanotechnology</i> , 2011 , 22, 135102	3.4	28	
17	The Effect of Stabilizer Density on Transformation of CdTe Nanoparticles Induced by Ag Cations. **Advanced Functional Materials*, 2008, 18, 3801-3808**	15.6	28	
17	Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids. <i>ACS Nano</i> , 2015 , 9, 8231-8	16.7	27	
17	6 Dipole-like electrostatic asymmetry of gold nanorods. <i>Science Advances</i> , 2018 , 4, e1700682	14.3	27	
17	Cell distribution profiles in three-dimensional scaffolds with inverted-colloidal-crystal geometry: modeling and experimental investigations. <i>Small</i> , 2005 , 1, 1208-14	11	27	
17.	Optical processes in carbon nanocolloids. <i>CheM</i> , 2021 , 7, 606-628	16.2	27	
17	A photoelectrochemical effect at the interface of immiscible electrolyte solutions. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 285, 223-240		26	
17.	Helical assemblies of gold nanoparticles. <i>Small</i> , 2011 , 7, 2004-9	11	25	

171	A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 4316-4321	3.9	25
170	Optical Emission and Energy Transfer in NanoparticleNanorod Assemblies: Potential Energy Pump System for Negative Refractive Index Materials. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18314-18320	o ^{3.8}	25
169	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF 2001 , 189-237		25
168	Chiral Nanoceramics. <i>Advanced Materials</i> , 2020 , 32, e1906738	24	24
167	Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. <i>Nature Communications</i> , 2018 , 9, 181	17.4	24
166	Formation of Thin Films of Platinum, Palladium, and Mixed Platinum: Palladium Nanocrystallites by the Langmuir Monolayer Technique. <i>Chemistry of Materials</i> , 1995 , 7, 1112-1116	9.6	24
165	Inorganic Nanostructures with Strong Chiroptical Activity. CCS Chemistry, 2020, 2, 583-604	7.2	24
164	Generic, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3161-8	11.5	23
163	Control of Energy Transfer to CdTe Nanowires via Conjugated Polymer Orientation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 109-116	3.8	23
162	Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7835-7845	16.4	23
161	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. <i>Nature Nanotechnology</i> , 2012 , 7, 479	28.7	22
160	Reversible nanoparticle gels with colour switching. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11639		22
159	Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8966-70	16.4	21
158	Single-Walled Carbon Nanotubes Spontaneous Loading into Exponentially Grown LBL Films. <i>Chemistry of Materials</i> , 2009 , 21, 4397-4400	9.6	21
157	Nonlinear magneto-optical Kerr effect in hyper-Rayleigh scattering from layer-by-layer assembled films of yttrium iron garnet nanoparticles. <i>Applied Physics Letters</i> , 2001 , 79, 1309-1311	3.4	21
156	Surface Modification of CdS Nanoparticles with MoS42-: A Case Study of Nanoparticle Modifier Electronic Interaction. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 9859-9866	3.4	21
155	Cadmium sulfide particles in organomontmorillonite complexes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1993 , 71, 317-326	5.1	21
154	Multidirectional Hierarchical Nanocomposites Made by Carbon Nanotube Growth within Layer-by-Layer-Assembled Films. <i>Chemistry of Materials</i> , 2011 , 23, 1023-1031	9.6	20

(2008-2018)

153	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. <i>ACS Energy Letters</i> , 2018 , 3, 1578-1583	20.1	20
152	Self-organization of Te nanorods into V-shaped assemblies: a Brownian dynamics study and experimental insights. <i>ACS Nano</i> , 2007 , 1, 126-32	16.7	19
151	Multiscale engineered artificial tooth enamel Science, 2022, 375, 551-556	33.3	19
150	Replication of bone marrow differentiation niche: comparative evaluation of different three-dimensional matrices. <i>Small</i> , 2013 , 9, 1008-15	11	18
149	Bioconjugated Ag Nanoparticles and CdTe Nanowires: Metamaterials with Field-Enhanced Light Absorption. <i>Angewandte Chemie</i> , 2006 , 118, 4937-4941	3.6	18
148	X-ray-Based Techniques to Study the Nano-Bio Interface. <i>ACS Nano</i> , 2021 , 15, 3754-3807	16.7	18
147	Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods. <i>ACS Nano</i> , 2017 , 11, 5925-5932	16.7	17
146	Self-assembly of inorganic nanoparticles: Ab ovo. <i>Europhysics Letters</i> , 2017 , 119, 66008	1.6	17
145	Electrical and optical properties of colloidal semiconductor nanocrystals in aqueous environments. Superlattices and Microstructures, 2006 , 40, 38-44	2.8	17
144	Spontaneous self-organization enables dielectrophoresis of small nanoparticles and formation of photoconductive microbridges. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10688-91	16.4	16
143	Self-guided one-sided metal reduction in te nanowires leading to Au-Te matchsticks. <i>Langmuir</i> , 2009 , 25, 13545-50	4	16
142	Corrosion protection with synergistic LBL/Ormosil nanostructured thin films. <i>International Journal of Nanotechnology</i> , 2004 , 1, 347	1.5	16
141	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8542-8551	16.4	16
140	Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 83, 1-9	5.4	15
139	Monte Carlo simulation of linear aggregate formation from CdTe nanoparticles. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2005 , 13, 389-399	2	15
138	Ring R ibbon Transition and Parallel Alignment in SWNT Films on Polyelectrolytes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8770-8772	3.4	15
137	Low-current field-assisted assembly of copper nanoparticles for current collectors. <i>Faraday Discussions</i> , 2015 , 181, 383-401	3.6	14
136	Passive wireless sensing using SWNT-based multifunctional thin film patches. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2008 , 28, 87-94	0.4	14

135	Langmuir-Blodgett Films Prepared from Ferroelectric Lead Zirconium Titanate Particles. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 12375-12378		14	
134	Interpretable and Efficient Interferometric Contrast in Scanning Transmission Electron Microscopy with a Diffraction-Grating Beam Splitter. <i>Physical Review Applied</i> , 2018 , 10,	4.3	14	
133	Supraparticle Nanoassemblies with Enzymes. <i>Chemistry of Materials</i> , 2019 , 31, 7493-7500	9.6	13	
132	Branched Aramid Nanofibers. <i>Angewandte Chemie</i> , 2017 , 129, 11906-11910	3.6	13	
131	Anisotropic calcium phosphate nanoparticles coated with 2-carboxyethylphosphonic acid. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3964		13	
130	Nanoparticles, molecular biosensors, and multispectral confocal microscopy. <i>Journal of Molecular Histology</i> , 2004 , 35, 555-64	3.3	13	
129	Nature of the processes of charge-carrier generation at ITIES by the photoexcitation of porphyrins. Journal of Electroanalytical Chemistry, 1992 , 338, 99-124	4.1	13	
128	Circular Polarized Light Emission in Chiral Inorganic Nanomaterials Advanced Materials, 2022, e210843	3124	13	
127	Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3820-31	3.6	12	
126	Traversing Material Scales: Macroscale LBL-Assembled Nanocomposites with Microscale Inverted Colloidal Crystal Architecture. <i>Chemistry of Materials</i> , 2012 , 24, 9-11	9.6	12	
125	In situ gene transfection and neuronal programming on electroconductive nanocomposite to reduce inflammatory response. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1109-1114		12	
124	Passive wireless strain and pH sensing using carbon nanotube-gold nanocomposite thin films 2007,		12	
123	Morphology-dependent spectroelectrochemical behavior of pbs nanoparticulate films grown under surfactant monolayers. <i>Advanced Materials</i> , 1994 , 6, 959-962	24	12	
122	Enantiomeric Discrimination by Surface-Enhanced Raman Scattering@hiral Anisotropy of Chiral Nanostructured Gold Films. <i>Angewandte Chemie</i> , 2020 , 132, 15338-15343	3.6	12	
121	Permselectivity Replication of Artificial Glomerular Basement Membranes in Nanoporous Collagen Multilayers. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2067-2072	6.4	11	
120	Conductive textiles and polymer-ceramic composites for novel load bearing antennas 2008,		11	
119	Metallic nanoparticles as optoacoustic contrast agents for medical imaging 2006 , 6086, 155		11	
118	Bioconjugated gold nanoparticles as a contrast agent for detection of small tumors 2003 ,		11	

117	Particle self-assembly: Superstructures simplified. <i>Nature Nanotechnology</i> , 2016 , 11, 1002-1003	28.7	11
116	Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures <i>Chemical Science</i> , 2022 , 13, 595-610	9.4	11
115	Biomimetic Nanocomposites: Water-Rich Biomimetic Composites with Abiotic Self-Organizing Nanofiber Network (Adv. Mater. 1/2018). <i>Advanced Materials</i> , 2018 , 30, 1870007	24	10
114	Scattering Properties of Individual Hedgehog Particles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1201	5 _{3:1} 92:02	! 1 10
113	Incorporation of Indium Tin Oxide Nanoparticles in PEMFC Electrodes. <i>Advanced Energy Materials</i> , 2012 , 2, 569-574	21.8	10
112	Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires: Experimental Observation and Theoretical Description. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1404	-₹ ⁸ 10	10
111	Gold nanoparticles with stable yellow-green luminescence. <i>International Journal of Nanotechnology</i> , 2007 , 4, 239	1.5	10
110	Ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 673		10
109	Computer analysis of photoinduced charge transfer at the ITIES in protoporphyrinquinone systems. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 341, 47-60	4.1	10
108	Nanoparticle Assembly: A Perspective and some Unanswered Questions. <i>Current Science</i> , 2017 , 112, 163	5 2.2	10
107	Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. <i>ACS Nano</i> , 2020 ,	16.7	10
106	Chemo- and Thermomechanically Configurable 3D Optical Metamaterials Constructed from Colloidal Nanocrystal Assemblies. <i>ACS Nano</i> , 2020 , 14, 1427-1435	16.7	10
105	Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles <i>Nature Nanotechnology</i> , 2022 ,	28.7	10
104	Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins. <i>Angewandte Chemie</i> , 2011 , 123, 5216-5221	3.6	9
103	Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells 2004,		9
102	Strong coupling of localized surface plasmons and ensembles of dye molecules. <i>Optics Express</i> , 2016 , 24, 25653-25664	3.3	9
101	Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength. <i>SmartMat</i> , 2021 , 2, 76-87	22.8	9
100	Electrochemistry on Stretchable Nanocomposite Electrodes: Dependence on Strain. <i>ACS Nano</i> , 2018 , 12, 9223-9232	16.7	8

99	Single-Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. <i>Advanced Materials</i> , 2021 , 33, e2103067	24	8
98	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14014-14028	3.8	7
97	Nanoparticle self-assembly: A loop of two rods. <i>Nature Materials</i> , 2014 , 13, 228-9	27	7
96	Mono- and multiparticulate Langmuir-Blodgett films prepared from surfactant-stabilized silver particles. <i>Materials Science and Engineering C</i> , 1995 , 3, 149-152	8.3	7
95	Origin of chiroptical activity in nanorod assemblies. <i>Science</i> , 2019 , 365, 1378-1379	33.3	6
94	Streptavidin Inhibits Self-Assembly of CdTe Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3249-3256	6.4	6
93	In vitro integration of human skin dermis with porous cationic hydrogels. <i>Acta Biomaterialia</i> , 2009 , 5, 3337-45	10.8	6
92	Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid) nanocomposite films. <i>Engineering Fracture Mechanics</i> , 2010 , 77, 3227-3245	4.2	6
91	Kinetics of Photoinduced Charge Transfer at Microscopic and Macroscopic Interfaces <i>Analytical Sciences</i> , 1999 , 15, 3-16	1.7	6
90	Structural Analysis of Nanoscale Network Materials Using Graph Theory. ACS Nano, 2021,	16.7	6
89	Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles. <i>Faraday Discussions</i> , 2016 , 191, 141-157	3.6	6
88	Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites. <i>Zeitschrift Fur Physikalische Chemie</i> , 2018 , 232, 1383-1398	3.1	5
87	Nonsolvent induced reconfigurable bonding configurations of ligands in nanoparticle purification. <i>Nanoscale Horizons</i> , 2019 , 4, 1416-1424	10.8	5
86	"Cloud" assemblies: quantum dots form electrostatically bound dynamic nebulae around large gold nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11878-84	3.6	5
85	Anisotropic nanoparticles: general discussion. <i>Faraday Discussions</i> , 2016 , 191, 229-254	3.6	5
84	Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity. <i>Chirality</i> , 2020 , 32, 899-906	2.1	5
83	Frustrated self-assembly of non-Euclidean crystals of nanoparticles. <i>Nature Communications</i> , 2021 , 12, 4925	17.4	5
82	Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. <i>Synthetic Metals</i> , 2015 , 205, 185-189	3.6	4

(2020-2010)

81	High-resolution imaging of molecular and nanoparticles assemblies with Kelvin force microscopy. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 7060-4	1.3	4
80	Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters <i>Nature Communications</i> , 2022 , 13, 278	17.4	4
79	Self-Assembly Mechanism of Complex Corrugated Particles. <i>Journal of the American Chemical Society</i> , 2021 , 143, 19655-19667	16.4	4
78	Broadband Circular Polarizers via Coupling in 3D Plasmonic Meta-Atom Arrays. <i>ACS Photonics</i> , 2021 , 8, 1286-1292	6.3	4
77	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. <i>MRS Bulletin</i> , 2021 , 46, 576-587	3.2	4
76	Photocatalytic Hedgehog Particles for High Ionic Strength Environments. <i>ACS Nano</i> , 2021 , 15, 4226-423	34 16.7	4
75	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126	16.7	3
74	Three-dimensional biomimetic scaffolds for hepatic differentiation of size-controlled embryoid bodies. <i>Journal of Materials Research</i> , 2019 , 34, 1371-1380	2.5	3
73	Spontaneous Formation of Cold-Welded Plasmonic Nanoassemblies with Refracted Shapes for Intense Raman Scattering. <i>Langmuir</i> , 2019 , 35, 4110-4116	4	3
72	Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. <i>Materials</i> , 2020 , 13,	3.5	3
71	Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 9094-9098	3.6	3
70	Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4992-4992	16.4	3
69	Effect of CdSe Nanoparticles on the Growth of Te Nanowires: Greater Length and Tortuosity and Nonmonotonic Concentration Effect. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2428-2433	3.8	3
68	In vivo imaging of inflammatory responses by photoacoustics using cell-targeted gold nanorods (GNR) as contrast agent 2008 ,		3
67	Enhanced photoacoustic neuroimaging with gold nanorods and PEBBLEs 2008,		3
66	Third-harmonic Mie scattering from semiconductor nanohelices. <i>Nature Photonics</i> , 2022 , 16, 126-133	33.9	3
65	Layer-by-layer (LBL) assembly with semiconductor nanoparticles and nanowires 2008, 197-216		3
64	Omnidispersible Microscale Colloids with Nanoscale Polymeric Spikes. <i>Chemistry of Materials</i> , 2020 , 32, 9897-9905	9.6	3

63	Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. <i>Advanced Materials</i> , 2021 , 33, e2007900	24	3
62	The art of empty space. <i>Science</i> , 2017 , 358, 448	33.3	2
61	Chiromagnetic Properties of Semiconductor Nanorods. <i>Matter</i> , 2020 , 2, 1089-1090	12.7	2
60	Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets. <i>Langmuir</i> , 2016 , 32, 12468-12475	4	2
59	Authentic synthetic nacre. <i>National Science Review</i> , 2017 , 4, 284-285	10.8	2
58	Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films. <i>Applied Physics Letters</i> , 2012 , 101, 203301	3.4	2
57	Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5096-5096	3.6	2
56	Spatial structural sensing by carbon nanotube-based skins 2008 ,		2
55	Self-Assembly of Nanostructured Semiconductor Films 1996 , 557-577		2
54	Emerging Trends in Chiral Inorganic Nanostructures. <i>Israel Journal of Chemistry</i> ,		2
<i>3</i> 4	Emerging Trends in Chiral morganic Nanoscructures. Israel Southal of Chemistry,	3.4	2
53	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> ,2102080	3·4 15.6	
	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional</i>		
53	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> ,2102080 Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design	15.6	2
53 52	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> ,2102080 Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines. <i>Australian Journal of Chemistry</i> , 2005 , 58, 713 Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts.	15.6	2
53 52 51	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> ,2102080 Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines. <i>Australian Journal of Chemistry</i> , 2005, 58, 713 Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. <i>Angewandte Chemie</i> , 2020, 132, 8620-8629	15.6 1.2 3.6	2 2 2
53525150	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> , 2102080 Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines. <i>Australian Journal of Chemistry</i> , 2005, 58, 713 Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. <i>Angewandte Chemie</i> , 2020, 132, 8620-8629 Nanoceramics: Chiral Nanoceramics (Adv. Mater. 41/2020). <i>Advanced Materials</i> , 2020, 32, 2070311 Self-Assembly of Earth-Abundant Supraparticles with Chiral Interstices for Enantioselective	15.6 1.2 3.6	2 2 2 2
 53 52 51 50 49 	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. <i>Advanced Functional Materials</i> ,2102080 Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines. <i>Australian Journal of Chemistry</i> , 2005, 58, 713 Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. <i>Angewandte Chemie</i> , 2020, 132, 8620-8629 Nanoceramics: Chiral Nanoceramics (Adv. Mater. 41/2020). <i>Advanced Materials</i> , 2020, 32, 2070311 Self-Assembly of Earth-Abundant Supraparticles with Chiral Interstices for Enantioselective Photocatalysis. <i>ACS Energy Letters</i> ,1405-1412	15.6 1.2 3.6 24 20.1	2 2 2 2

45	Field-assisted self-assembly process: general discussion. <i>Faraday Discussions</i> , 2015 , 181, 463-79	3.6	1
44	Effect of TGA Concentration on Morphology of Cu2S Nanoparticals. <i>Advanced Materials Research</i> , 2014 , 998-999, 47-50	0.5	1
43	Record Properties of Layer-by-Layer Assembled Composites 2012 , 573-593		1
42	Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods 2011 ,		1
41	Fluorescence spectroscopy of semiconductor CdTe nanocrystals: preparation effect on photostability. <i>Open Physics</i> , 2011 , 9,	1.3	1
40	Simultaneous photoacoustic detection of multiple inflammatory biomarkers using bioconjugated gold nanorods as selective targeting agents 2010 ,		1
39	Nanoscale design of ultrastrong materials by LBL assembly 2008,		1
38	Gold nano-rods as a targeting contrast agent for photoacoustic imaging 2007,		1
37	Mechanical-electrical characterization of carbon-nanotube thin films for structural monitoring applications 2006 ,		1
36	Colloidal quantum dots as optoelectronic elements 2006 , 6127, 131		1
35	Assembly of Nanomaterials using Polymers and Biomaterials: Sensing and Electronic Applications. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 901, 1		1
34	Excitation-dependent emissive FeSe nanoparticles induced by chiral interlayer expansion and their multi-color bio-imaging. <i>Nano Today</i> , 2022 , 43, 101424	17.9	1
33	Organization of Nanoparticles and Nanowires in Electronic Devices 2005 , 3-73		1
32	Struct2Graph: A graph attention network for structure based predictions of protein-protein interactions		1
31	Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification 2009 , 28, 9		1
30	Circular extinction of plasmonic silver nanocaps and gas sensing. Faraday Discussions, 2016 , 186, 345-52	3.6	1
29	Fiber-reinforced monolithic supercapacitors with interdigitated interfaces. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11033-11041	13	1
28	Layered biomimetic nanocomposites replicate bone surface in three-dimensional cell cultures. Nanocomposites, 2018, 4, 156-166	3.4	1

27	Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale. <i>ACS Nano</i> , 2021 , 15, 15229-15237	16.7	1
26	Experimental Evidence of Radio Frequency Radiation From Staphylococcus aureus Biofilms. <i>IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology</i> , 2022 , 1-9	2.8	1
25	Unifying structural descriptors for biological and bioinspired nanoscale complexes. <i>Nature Computational Science</i> , 2022 , 2, 243-252		1
24	Layered Biomimetic Composites from MXenes with Sequential Bridging <i>Angewandte Chemie - International Edition</i> , 2022 , e202114140	16.4	Ο
23	Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LHBETATAG Transgenic Mice Reti-noblastoma Model. <i>Journal of Ophthalmic and Vision Research</i> , 2020 , 15, 446-452	1.2	0
22	Early Growth Stages of Hierarchically Organized Chiral Structures. <i>Microscopy and Microanalysis</i> , 2020 , 26, 550-551	0.5	O
21	Real-Time 3D Analysis During Tomographic Experiments on tomviz. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2860-2862	0.5	0
20	Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AICHE Journal,e17438	3.6	Ο
19	Ultrastrong Materials, Nanostructured 2014 , 5011-5017		
18	Antibodies and Antigens: Luminescence of Nanoparticle-Labeled 2014 , 191-197		
18	Antibodies and Antigens: Luminescence of Nanoparticle-Labeled 2014 , 191-197 Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200	24	
	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert	24	
17	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200 Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. <i>Materials</i>	24	
17 16	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200 Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1208, 1 Ultrafast Laser Alignment and Processing of Carbon Nanotube Films. <i>Materials Research Society</i>	0.3	
17 16 15	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200 Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1208, 1 Ultrafast Laser Alignment and Processing of Carbon Nanotube Films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1308, 10601 The Role of Interface and Reinforcement in the Finite Deformation Response of Polyurethane-Montmorillonite Nanocomposites. <i>Conference Proceedings of the Society for</i>		
17 16 15	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). Advanced Materials, 2014, 26, 6200-6200 Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. Materials Research Society Symposia Proceedings, 2009, 1208, 1 Ultrafast Laser Alignment and Processing of Carbon Nanotube Films. Materials Research Society Symposia Proceedings, 2011, 1308, 10601 The Role of Interface and Reinforcement in the Finite Deformation Response of Polyurethane-Montmorillonite Nanocomposites. Conference Proceedings of the Society for Experimental Mechanics, 2011, 133-137 ONE-AND TWO-DIMENSIONAL ASSEMBLIES OF NANOPARTICLES: MECHANISMS OF FORMATION		
17 16 15 14	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200 Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1208, 1 Ultrafast Laser Alignment and Processing of Carbon Nanotube Films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1308, 10601 The Role of Interface and Reinforcement in the Finite Deformation Response of Polyurethane-Montmorillonite Nanocomposites. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2011 , 133-137 ONE-AND TWO-DIMENSIONAL ASSEMBLIES OF NANOPARTICLES: MECHANISMS OF FORMATION AND FUNCTIONALITY. <i>Annual Review of Nano Research</i> , 2008 , 345-375		

LIST OF PUBLICATIONS

Morphology-Dependent Spectroelectrochemical Behavior of PbS Nanoparticulate Films Grown 9 Under Surfactant Monolayers. Materials Research Society Symposia Proceedings, 1994, 358, 259 Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LH 8 T Transgenic Mice Reti-noblastoma Model. *Journal of Ophthalmic and Vision Research*, **2020**, 15, 446-452 ^{1.2} Nanoparticle Films: Dimensionally Graded Semiconductor3125-3131 Dimensionally Graded Semiconductor Nanoparticle Films 2008, 1062-1069 Nanostructured Ultrastrong Materials 2008, 3072-3079 5 Synthesis of Nanoparticle Assemblies: general discussion. Faraday Discussions, 2016, 186, 123-52 3.6 4 Electrostatic Asymmetry of Wurtzite Nanocrystals and Resulting Photocatalytic Properties. Journal 3.8 3 of Physical Chemistry C, 2022, 126, 4751-4761 Layer-by-Layer Assembly of Multifunctional Carbon Nanotube Thin Films305-319 Tribute to Marie-Paule Pileni. Journal of Physical Chemistry C, 2022, 126, 7357-7358 3.8 1