
Susanna Dolci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5680898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice. Cell, 1989, 57, 717-723.	28.9	498
2	Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature, 1991, 352, 809-811.	27.8	479
3	Follicle-Stimulating Hormone Induction of Steel Factor (SLF) mRNA in Mouse Sertoli Cells and Stimulation of DNA Synthesis in Spermatogonia by Soluble SLF. Developmental Biology, 1993, 155, 68-74.	2.0	211
4	Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. Journal of Cell Science, 2003, 116, 3363-3372.	2.0	196
5	Repression of kit Expression by Plzf in Germ Cells. Molecular and Cellular Biology, 2007, 27, 6770-6781.	2.3	178
6	Role of c-kit in mammalian spermatogenesis. Journal of Endocrinological Investigation, 2000, 23, 609-615.	3.3	150
7	Opposing effects of retinoic acid and FGF9 on <i>Nanos2</i> expression and meiotic entry of mouse germ cells. Journal of Cell Science, 2010, 123, 871-880.	2.0	138
8	Type 5 phosphodiesterase expression in the human vagina. Urology, 2002, 60, 191-195.	1.0	136
9	Signaling through Extracellular Signal-regulated Kinase Is Required for Spermatogonial Proliferative Response to Stem Cell Factor. Journal of Biological Chemistry, 2001, 276, 40225-40233.	3.4	114
10	Leukemia inhibitory factor sustains the survival of mouse primordial germ cells cultured on TM4 feeder layers. Developmental Biology, 1991, 147, 281-284.	2.0	108
11	Essential Role of Sox2 for the Establishment and Maintenance of the Germ Cell Line. Stem Cells, 2013, 31, 1408-1421.	3.2	106
12	ATRA and KL promote differentiation toward the meiotic program of male germ cells Cell Cycle, 2008, 7, 3878-3888.	2.6	104
13	Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells. Molecular Reproduction and Development, 1993, 35, 134-139.	2.0	85
14	Direct evidence that the mouse sex-determining geneSry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Molecular Reproduction and Development, 1993, 34, 369-373.	2.0	82
15	Kit regulatory elements required for expression in developing hematopoietic and germ cell lineages. Blood, 2003, 102, 3954-3962.	1.4	77
16	Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Developmental Biology, 2008, 313, 725-738.	2.0	77
17	SOHLH1 and SOHLH2 control Kit expression during postnatal male germ cell development Journal of Cell Science, 2012, 125, 1455-64.	2.0	73
18	Proliferation of Mouse Primordial Germ Cells in Vitro: A Key Role for cAMP. Developmental Biology, 1993, 157, 277-280.	2.0	72

#	Article	IF	CITATIONS
19	Platelet-Derived Growth Factor Receptor Î ² -Subtype Regulates Proliferation and Migration of Gonocytes. Endocrinology, 2008, 149, 6226-6235.	2.8	69
20	Increased expression and nuclear localization of the centrosomal kinase Nek2 in human testicular seminomas. Journal of Pathology, 2009, 217, 431-441.	4.5	63
21	In vitro adhesion of mouse fetal germ cells to extracellular matrix components. Cell Differentiation and Development, 1989, 26, 87-96.	0.4	59
22	Paracrine Mechanisms Involved in the Control of Early Stages of Mammalian Spermatogenesis. Frontiers in Endocrinology, 2013, 4, 181.	3.5	58
23	Developmental regulation of the thyroid hormone receptor alpha 1 mRNA expression in the rat testis. Molecular Endocrinology, 1994, 8, 89-96.	3.7	58
24	BRCA1, PARP1 and γH2AX in acute myeloid leukemia: Role as biomarkers of response to the PARP inhibitor olaparib. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 462-472.	3.8	53
25	INTERMITTENT CATHETERIZATION WITH A PRELUBRICATED CATHETER IN SPINAL CORD INJURED PATIENTS: A PROSPECTIVE RANDOMIZED CROSSOVER STUDY. Journal of Urology, 2001, 166, 130-133.	0.4	49
26	An increase of intracellular free Ca2+ is essential for spontaneous meiotic resumption by mouse oocytes. The Journal of Experimental Zoology, 1991, 260, 401-405.	1.4	48
27	Subcellular localization and regulation of type-1C and type-5 phosphodiesterases. Biochemical and Biophysical Research Communications, 2006, 341, 837-846.	2.1	45
28	In or Out Stemness: Comparing Growth Factor Signalling in Mouse Embryonic Stem Cells and Primordial Germ Cells. Current Stem Cell Research and Therapy, 2009, 4, 87-97.	1.3	45
29	Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand. Gene Expression Patterns, 2008, 8, 58-70.	0.8	42
30	RanBPM is essential for mouse spermatogenesis and oogenesis. Development (Cambridge), 2011, 138, 2511-2521.	2.5	42
31	Analysis of the gene expression profile of mouse male meiotic germ cells. Gene Expression Patterns, 2004, 4, 267-281.	0.8	41
32	Imatinib Mesylate Inhibits Leydig Cell Tumor Growth: Evidence for <i>In vitro</i> and <i>In vivo</i> Activity. Cancer Research, 2005, 65, 1897-1903.	0.9	39
33	Molecular mechanisms utilized by alternative c-kit gene products in the control of spermatogonial proliferation and sperm-mediated egg activation. Andrologia, 2003, 35, 71-78.	2.1	37
34	Identification of a Promoter Region Generating Sry Circular Transcripts Both in Germ Cells from Male Adult Mice and in Male Mouse Embryonal Gonads1. Biology of Reproduction, 1997, 57, 1128-1135.	2.7	36
35	Ontogenetic Profile of the Expression of Thyroid Hormone Receptors in Rat and Human Corpora Cavernosa of the Penis. Journal of Sexual Medicine, 2010, 7, 1381-1390.	0.6	31
36	Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget, 2017, 8, 13223-13239.	1.8	30

#	Article	IF	CITATIONS
37	Identification of Multipotent Cytotrophoblast Cells from Human First Trimester Chorionic Villi. Cloning and Stem Cells, 2009, 11, 535-556.	2.6	28
38	Putative second messengers affect cell coupling in the seminiferous tubules. Cell Biology International Reports, 1986, 10, 631-639.	0.6	27
39	Cannabinoid Receptors Signaling in the Development, Epigenetics, and Tumours of Male Germ Cells. International Journal of Molecular Sciences, 2020, 21, 25.	4.1	26
40	Stem cell factor activates telomerase in mouse mitotic spermatogonia and in primordial germ cells. Journal of Cell Science, 2002, 115, 1643-1649.	2.0	26
41	Microgravity Promotes Differentiation and Meiotic Entry of Postnatal Mouse Male Germ Cells. PLoS ONE, 2010, 5, e9064.	2.5	26
42	Overactive type 2 cannabinoid receptor induces meiosis in fetal gonads and impairs ovarian reserve. Cell Death and Disease, 2017, 8, e3085-e3085.	6.3	25
43	Molecular Genetics of Male Infertility: Stem Cell Factor/c-kit System. American Journal of Reproductive Immunology, 2002, 48, 27-33.	1.2	23
44	To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. International Journal of Molecular Sciences, 2021, 22, 5982.	4.1	23
45	Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase. Journal of Cell Science, 2011, 124, 91-99.	2.0	22
46	Regulation of Phosphodiesterase 5 Expression and Activity in Human Pregnant and Non-pregnant Myometrial Cells by Human Chorionic Gonadotropin. Journal of the Society for Gynecologic Investigation, 2005, 12, 570-577.	1.7	21
47	Stem cell factor activates telomerase in mouse mitotic spermatogonia and in primordial germ cells. Journal of Cell Science, 2002, 115, 1643-9.	2.0	20
48	γ-Amino butyric-N-acid sensitivity of mouse and human oocytes. Developmental Biology, 1985, 109, 242-246.	2.0	18
49	Gonadal development and germ cell tumors in mouse and humans. Seminars in Cell and Developmental Biology, 2015, 45, 114-123.	5.0	18
50	SOHLH1 and SOHLH2 directly down-regulate STIMULATED BY RETINOIC ACID 8 (STRA8) expression. Cell Cycle, 2015, 14, 1036-1045.	2.6	17
51	Chapter 7 Cellular Interactions of Mouse Fetal Germ Cells In In Vitro Systems. Current Topics in Developmental Biology, 1987, 23, 147-162.	2.2	14
52	MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination. Cancer Chemotherapy and Pharmacology, 2013, 72, 117-125.	2.3	14
53	Type 5 phosphodiesterase (PDE5) and the vascular tree: From embryogenesis to aging and disease. Mechanisms of Ageing and Development, 2020, 190, 111311.	4.6	13
54	Fetal germ cells establish cell coupling with follicle cells in vitro. Cell Differentiation and Development, 1989, 28, 65-69.	0.4	12

#	Article	IF	CITATIONS
55	Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms. Scientific Reports, 2019, 9, 12206.	3.3	12
56	From testis to teratomas: a brief history of male germ cells in mammals. International Journal of Developmental Biology, 2013, 57, 115-121.	0.6	11
57	Decellularized Extracellular Matrices and Cardiac Differentiation: Study on Human Amniotic Fluid-Stem Cells. International Journal of Molecular Sciences, 2020, 21, 6317.	4.1	11
58	Human adipose-derived stromal cells transplantation prolongs reproductive lifespan on mouse models of mild and severe premature ovarian insufficiency. Stem Cell Research and Therapy, 2021, 12, 537.	5.5	11
59	Cell-to-cell communication in cultured Sertoli cells. Pflugers Archiv European Journal of Physiology, 1985, 404, 382-384.	2.8	10
60	Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan. International Journal of Oncology, 2013, 43, 210-218.	3.3	10
61	Sempervirine inhibits RNA polymerase I transcription independently from p53 in tumor cells. Cell Death Discovery, 2020, 6, 111.	4.7	10
62	Regulation of Kit Expression in Early Mouse Embryos and ES Cells. Stem Cells, 2019, 37, 332-344.	3.2	9
63	Involvement of carbohydrates in the hardening of the zona pellucida of mouse oocytes. Cell Biology International Reports, 1991, 15, 571-579.	0.6	8
64	The Ontogenetic Expression Pattern of Type 5 Phosphodiesterase Correlates with Androgen Receptor Expression in Rat Corpora Cavernosa. Journal of Sexual Medicine, 2009, 6, 388-396.	0.6	8
65	Involvement of thiol-disulfide groups in the sensitivity of fully grown mouse oocytes to calcium-free medium. The Journal of Experimental Zoology, 1987, 243, 283-287.	1.4	7
66	Episode-like pulse testosterone supplementation induces tumor senescence and growth arrest down-modulating androgen receptor through modulation of p-ERK1/2, pARser81 and CDK1 signaling: biological implications for men treated with testosterone replacement therapy. Oncotarget, 2017, 8, 113792-113806.	1.8	7
67	Expression of the Xist Gene in Urogenital Ridges of Midgestation Male Embryos. Biochemical and Biophysical Research Communications, 1994, 205, 334-340.	2.1	6
68	Plateletâ€Derived Growth Factor Regulation of Typeâ€5 Phosphodiesterase in Human and Rat Penile Smooth Muscle Cells. Journal of Sexual Medicine, 2014, 11, 1675-1684.	0.6	6
69	Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life, 2021, 11, 736.	2.4	6
70	MAPK activation drives male and female mouse teratocarcinomas from late primordial germ cells. Journal of Cell Science, 2022, 135, .	2.0	6
71	Influence of cumulus cell processes on oolemma permeability and lethality of isolated mouse oocytes cultured in Ca2+-free medium. Gamete Research, 1989, 23, 245-253.	1.7	4
72	ATP-Content and Kinetics of Acrosome Reaction in Human Spermatozoa: Influence of Various Culture Media and Incubation Time. Andrologia, 1988, 20, 169-172.	2.1	2

#	Article	IF	CITATIONS
73	Male germ cells and cancer: a connection among pluripotency, differentiation and stem cell biology. International Journal of Developmental Biology, 2013, 57, 101-103.	0.6	2
74	Castration and emasculation in the Middle Age. The andrological conundrum of Peter Abelard. Andrology, 2022, 10, 825-836.	3.5	2
75	Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase. Development (Cambridge), 2011, 138, e0208-e0208.	2.5	Ο
76	SOHLH1 and SOHLH2 control Kit expression during postnatal male germ cell development. Development (Cambridge), 2012, 139, e1106-e1106.	2.5	0
77	UV and genotoxic stress induce ATR relocalization in mouse spermatocytes. International Journal of Developmental Biology, 2013, 57, 281-287.	0.6	Ο
78	Alternative Forms and Functions of the c-kit Receptor and Its Ligand During Spermatogenesis. , 1996, , 99-110.		0