Cuibo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5680656/publications.pdf

Version: 2024-02-01

101496 95218 4,923 77 36 68 citations h-index g-index papers 88 88 88 5265 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. Journal of Materials Chemistry A, 2022, 10, 5743-5757.	5.2	22
2	Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Science Advances, 2022, 8, eabm9477.	4.7	40
3	Unravelling a new many-body large-hole polaron in a transition metal oxide that promotes high photocatalytic activity. NPG Asia Materials, 2022, 14, .	3.8	5
4	Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Research, 2022, 15, 10134-10141.	5.8	15
5	Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 2021, 403, 126269.	6.6	375
6	Thermally-assisted photocatalytic CO2 reduction to fuels. Chemical Engineering Journal, 2021, 408, 127280.	6.6	90
7	Anion Vacancy Engineering in Electrocatalytic Water Splitting. ChemNanoMat, 2021, 7, 102-109.	1.5	17
8	Molecular engineered palladium single atom catalysts with an M-C ₁ N ₃ subunit for Suzuki coupling. Journal of Materials Chemistry A, 2021, 9, 11427-11432.	5.2	18
9	Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Reports Physical Science, 2021, 2, 100337.	2.8	24
10	Catalytic Role of Metal Nanoparticles in Selectivity Control over Photodehydrogenative Coupling of Primary Amines to Imines and Secondary Amines. ACS Catalysis, 2021, 11, 6656-6661.	5.5	43
11	Using water as the hydrogen source for electrocatalytic transfer hydrogen storage. Science Bulletin, 2021, 66, 1047-1049.	4.3	9
12	Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nature Communications, 2021, 12, 3881.	5.8	77
13	Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Reports Physical Science, 2021, 2, 100462.	2.8	18
14	Selenium Vacancy Promotes Transfer Semihydrogenation of Alkynes from Water Electrolysis. ACS Catalysis, 2021, 11, 9471-9478.	5.5	29
15	Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382.	11.1	39
16	Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catalysis, 2021, 11, 8958-8967.	5.5	45
17	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie, 2021, 133, 22181-22187.	. 1.6	13
18	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie - International Edition, 2021, 60, 22010-22016.	7.2	34

#	Article	IF	CITATIONS
19	Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode. Chinese Journal of Catalysis, 2021, 42, 1983-1991.	6.9	23
20	Sulfur Vacancy-Promoted Highly Selective Electrosynthesis of Functionalized Aminoarenes via Transfer Hydrogenation of Nitroarenes with H ₂ O over a Co ₃ S _{4â°'} <i> _x </i> Nanosheet Cathode. CCS Chemistry, 2021, 3, 507-515.	4.6	56
21	Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. National Science Review, 2020, 7, 285-295.	4.6	107
22	Cobalt Singleâ€Atomâ€Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. Advanced Materials, 2020, 32, e1906437.	11.1	62
23	Electrocatalytic Deuteration of Halides with D ₂ O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angewandte Chemie - International Edition, 2020, 59, 18527-18531.	7.2	68
24	Selective Transfer Semihydrogenation of Alkynes with H ₂ O (D ₂ O) as the H (D) Source over a Pdâ€P Cathode. Angewandte Chemie - International Edition, 2020, 59, 21170-21175.	7.2	91
25	Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio. Science China Materials, 2020, 63, 2351-2357.	3.5	15
26	Electrocatalytic Deuteration of Halides with D ₂ O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angewandte Chemie, 2020, 132, 18685-18689.	1.6	22
27	A nitrogen fixation strategy to synthesize NO <i>via</i> the thermally assisted photocatalytic conversion of air. Journal of Materials Chemistry A, 2020, 8, 19623-19630.	5.2	24
28	Selective Transfer Semihydrogenation of Alkynes with H 2 O (D 2 O) as the H (D) Source over a Pdâ€P Cathode. Angewandte Chemie, 2020, 132, 21356-21361.	1.6	15
29	Divergent Chemistry Paths for 3D and 1D Metalloâ€Covalent Organic Frameworks (COFs). Angewandte Chemie, 2020, 132, 11624-11629.	1.6	10
30	Edge activation of an inert polymeric carbon nitride matrix with boosted absorption kinetics and near-infrared response for efficient photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 11761-11772.	5.2	42
31	Synthesis of ammonia via an electroreduction removal of NO from exhausted gas: an upgrading to N2 fixation. Science China Chemistry, 2020, 63, 1173-1174.	4.2	13
32	Single crystal of a one-dimensional metallo-covalent organic framework. Nature Communications, 2020, 11, 1434.	5.8	77
33	Divergent Chemistry Paths for 3D and 1D Metalloâ€Covalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2020, 59, 11527-11532.	7.2	35
34	Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Science China Materials, 2020, 63, 2530-2538.	3.5	54
35	Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics. ACS Catalysis, 2020, 10, 3904-3910.	5.5	60
36	Unveiling in situ evolved In/In2O3â^' heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Science Bulletin, 2020, 65, 1547-1554.	4.3	105

#	Article	IF	CITATIONS
37	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie, 2019, 131, 12142-12145.	1.6	138
38	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie - International Edition, 2019, 58, 12014-12017.	7.2	189
39	Efficient Electrosynthesis of Syngas with Tunable CO/H ₂ Ratios over Zn _{<i>></i>>>} Cd _{1â°'<i>></i>} Sâ€Amine Inorganic–Organic Hybrids. Angewandte Chemie - International Edition, 2019, 58, 18908-18912.	7.2	94
40	Efficient Electrosynthesis of Syngas with Tunable CO/H 2 Ratios over Zn x Cd 1â° x Sâ€Amine Inorganic–Organic Hybrids. Angewandte Chemie, 2019, 131, 19084-19088.	1.6	7
41	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e19058	B 79. 1	129
42	Photocatalysis: Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations (Adv. Sci. 1/2019). Advanced Science, 2019, 6, 1970002.	5.6	0
43	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25147-25154.	4.0	152
44	Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9997-10003.	5.2	102
45	Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Advanced Materials, 2019, 31, e1900341.	11.1	320
46	Insights into Singleâ€Atom Metal–Support Interactions in Electrocatalytic Water Splitting. Small Methods, 2019, 3, 1800481.	4.6	94
47	Expedient synthesis of $\langle i \rangle E \langle i \rangle$ -hydrazone esters and $1 \langle i \rangle H \langle i \rangle$ -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	4.7	31
48	Promoted Glycerol Oxidation Reaction in an Interfaceâ€Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763.	11.1	40
49	Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations. Advanced Science, 2019, 6, 1801403.	5.6	67
50	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	3.2	169
51	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chemical Communications, 2018, 54, 2349-2352.	2.2	205
52	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	5.8	123
53	Frontispiz: Graphene-Oxide-Catalyzed Direct CHâ $^{\circ}$ CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, .	1.6	O
54	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. Chemistry of Materials, 2018, 30, 5743-5749.	3.2	108

#	Article	IF	Citations
55	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, 10848-10853.	7.2	63
56	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie, 2018, 130, 13347-13350.	1.6	69
57	Frontispiece: Graphene-Oxide-Catalyzed Direct CHâ^'CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, .	7.2	O
58	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie - International Edition, 2018, 57, 13163-13166.	7.2	312
59	Grapheneâ€Oxideâ€Catalyzed Direct CHâ°'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, 11014-11019.	1.6	11
60	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017, 139, 8897-8904.	6.6	151
61	Facile Access to Fluoroaromatic Molecules by Transition-Metal-Free C-F Bond Cleavage of Polyfluoroarenes: An Efficient, Green, and Sustainable Protocol. Chemical Record, 2016, 16, 667-687.	2.9	28
62	Covalent triazine framework-supported palladium as a ligand-free catalyst for the selective double carbonylation of aryl iodides under ambient pressure of CO. Chemical Communications, 2016, 52, 2960-2963.	2.2	60
63	A water-soluble glucose-functionalized cobalt(<scp>iii</scp>) complex as an efficient electrocatalyst for hydrogen evolution under neutral conditions. Dalton Transactions, 2015, 44, 1526-1529.	1.6	13
64	Light-mediated cascade transformation of activated alkenes: BiOBr nanosheets as efficient photocatalysts for the synthesis of \hat{l} ±-aryl- \hat{l} 2-trifluoromethyl amides. RSC Advances, 2015, 5, 61199-61203.	1.7	21
65	One-pot two-step facile synthesis of 2,3,5,6-tetrafluorobenzonitrile-containing dithiocarbamic acid esters. Tetrahedron Letters, 2015, 56, 5135-5139.	0.7	17
66	Base-promoted direct and highly selective alkynylation of electron-deficient octafluorotoluene. RSC Advances, 2015, 5, 31993-31997.	1.7	14
67	Light-induced BiOBr nanosheets accelerated highly regioselective intermolecular trifluoromethylation/arylation of alkenes to synthesize CF3-containing aza-heterocycles. Tetrahedron, 2015, 71, 4344-4351.	1.0	34
68	Light triggered addition/annulation of 2-isocyanobiphenyls toward 6-trifluoromethyl-phenanthridines under photocatalyst-free conditions. RSC Advances, 2015, 5, 76363-76367.	1.7	24
69	Base initiated aromatization/CO bond formation: a new entry to O-pyrazole polyfluoroarylated ethers. Tetrahedron Letters, 2014, 55, 6534-6537.	0.7	9
70	One-pot two-step sequential transformation: Highly efficient construction of o-2,3,5,6-tetrafluorobenzonitrile substituted oximes ethers. Journal of Fluorine Chemistry, 2014, 165, 101-108.	0.9	6
71	Sulfur copolymer nanowires with enhanced visible-light photoresponse. Chemical Communications, 2014, 50, 11208-11210.	2.2	32
72	Highly selective synthesis of 1-polyfluoroaryl-1,2,3-triazoles via a one-pot three-component reaction. Tetrahedron Letters, 2014, 55, 5033-5037.	0.7	21

Сиво Liu

#	Article	IF	CITATION
73	Selective C4–F bond cleavage of pentafluorobenzene: synthesis of N-tetrafluoroarylated heterocyclic compounds. Tetrahedron Letters, 2013, 54, 4649-4652.	0.7	29
74	Porous single-crystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. RSC Advances, 2013, 3, 22944.	1.7	61
75	Selective C4â^F bond cleavage/Câ^O bond formation of polyfluoroarenes with phenols and benzyl alcohols. Journal of Fluorine Chemistry, 2013, 156, 51-60.	0.9	23
76	Conversion of CuO Nanoplates into Porous Hybrid Cu ₂ O/Polypyrrole Nanoflakes through a Pyrroleâ€Induced Reductive Transformation Reaction. Chemistry - an Asian Journal, 2013, 8, 1120-1127.	1.7	23
77	Synthesis of Hollow Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} Se Nanoframes through the Selective Cation Exchange of Inorganicâ€"Organic Hybrid ZnSeâ€"Amine Nanoflakes with Cadmium Ions. Angewandte Chemie - International Edition, 2012, 51, 3211-3215.	7.2	109