Jie Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5680315/publications.pdf

Version: 2024-02-01

		1163117	1199594	
13	139	8	12	
papers	citations	h-index	g-index	
13	13	13	147	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Effects of Temperature and Dry Density on Hydraulic Conductivity of Silty Clay under Infiltration of Low-Temperature Water. Arabian Journal for Science and Engineering, 2014, 39, 461-466.	1.1	20
2	A review on using heat as a tool for studying groundwater–surface water interactions. Environmental Earth Sciences, 2018, 77, 1.	2.7	17
3	Morris Sensitivity Analysis for Hydrothermal Coupling Parameters of Embankment Dam: A Case Study. Mathematical Problems in Engineering, 2019, 2019, 1-11.	1.1	17
4	A new empirical model for the estimation of soil thermal conductivity. Environmental Earth Sciences, 2019, 78, 1.	2.7	17
5	Modeling and comparative analysis of a flow and heat coupling model of the riparian zone based on thermal conductivity empirical models. Journal of Hydrology, 2020, 582, 124539.	5.4	16
6	Heat tracer test in a riparian zone: Laboratory experiments and numerical modelling. Journal of Hydrology, 2018, 563, 560-575.	5.4	14
7	A comparison of numerical and Lu modeling of water flow and heat transport with laboratory experiments. Environmental Earth Sciences, 2019, 78, 1.	2.7	10
8	An Analysis of the Factors Affecting Hyporheic Exchange based on Numerical Modeling. Water (Switzerland), 2019, 11, 665.	2.7	9
9	Multifield Coupling Numerical Simulation of the Seepage and Stability of Embankment Dams on Deep Overburden Layers. Arabian Journal for Science and Engineering, 2022, 47, 7293-7308.	3.0	8
10	Global Sensitivity Analysis to Assess Salt Precipitation for CO ₂ Geological Storage in Deep Saline Aquifers. Geofluids, 2017, 2017, 1-16.	0.7	7
11	Comparison of $1\text{-}D$ analytical solutions and a numerical model for quantifying hyporheic exchange flux using the temperature tracer method. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	2
12	A Hydrothermal Coupling Model for Estimating Temperature Variations in the Riparian Zone. Mathematical Problems in Engineering, 2020, 2020, 1-12.	1.1	1
13	A Comparison of Su and Lu Modeling of Hydro-Thermal Coupling Model Using Field Temperature Records. Polish Journal of Environmental Studies, 2020, 30, 337-350.	1.2	1