Jinpeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679999/publications.pdf Version: 2024-02-01

INDENC WANC

#	Article	IF	CITATIONS
1	Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry, 2020, 317, 126328.	4.2	67
2	A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science and Technology, 2019, 92, 138-151.	7.8	66
3	Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled Cyclodextrin-Based Metal–Organic Frameworks Based on Short-Chain Starch Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 9785-9793.	2.4	58
4	Effects of Degree of Polymerization on Size, Crystal Structure, and Digestibility of Debranched Starch Nanoparticles and Their Enhanced Antioxidant and Antibacterial Activities of Curcumin. ACS Sustainable Chemistry and Engineering, 2019, 7, 8499-8511.	3.2	50
5	Green Synthesis of Cyclodextrin-Based Metal–Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules. Journal of Agricultural and Food Chemistry, 2018, 66, 4244-4250.	2.4	46
6	Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. International Journal of Biological Macromolecules, 2018, 114, 381-391.	3.6	44
7	Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. International Journal of Biological Macromolecules, 2020, 152, 117-125.	3.6	43
8	Self-Assembly of Metal–Phenolic Networks as Functional Coatings for Preparation of Antioxidant, Antimicrobial, and pH-Sensitive-Modified Starch Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 17379-17389.	3.2	41
9	Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. Journal of Colloid and Interface Science, 2019, 553, 549-556.	5.0	41
10	Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydrate Polymers, 2020, 229, 115418.	5.1	41
11	A novel tripleâ€wavelength colorimetric method for measuring amylose and amylopectin contents. Starch/Staerke, 2010, 62, 508-516.	1.1	40
12	Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering, 2022, 312, 110752.	2.7	33
13	Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. Ultrasonics Sonochemistry, 2020, 66, 105074.	3.8	27
14	Preparation of malto-oligosaccharides with specific degree of polymerization by a novel cyclodextrinase from Palaeococcus pacificus. Carbohydrate Polymers, 2019, 210, 64-72.	5.1	24
15	Cycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-α-glucanotransferase. Carbohydrate Polymers, 2014, 102, 66-73.	5.1	23
16	In Situ Self-Assembly of Nanoparticles into Waxberry-Like Starch Microspheres Enhanced the Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 46609-46620.	4.0	21
17	Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE). Food Chemistry, 2016, 203, 530-535.	4.2	20
18	High-efficiency production of Î ³ -cyclodextrin using Î ² -cyclodextrin as the donor raw material by cyclodextrin opening reactions using recombinant cyclodextrin glycosyltransferase. Carbohydrate Polymers, 2018, 182, 75-80.	5.1	19

JINPENG WANG

#	Article	IF	CITATIONS
19	Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 2022, 376, 131869.	4.2	19
20	Enhancement of umami taste of hydrolyzed protein from wheat gluten by <i>β</i> yclodextrin. Journal of the Science of Food and Agriculture, 2016, 96, 4499-4504.	1.7	16
21	Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2021, 69, 11006-11014.	2.4	15
22	Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 2018, 172, 451-458.	2.5	14
23	Monodisperse hollow-shell structured molecularly imprinted polymers for photocontrolled extraction α-cyclodextrin from complex samples. Food Chemistry, 2019, 281, 1-7.	4.2	14
24	Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials, 2017, 10, 1210.	1.3	13
25	Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules, 2017, 22, 1824.	1.7	13
26	Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. Food Bioscience, 2021, 41, 101081.	2.0	13
27	Immobilized Cells of Bacillus circulans ATCC 21783 on Palm Curtain for Fermentation in 5 L Fermentation Tanks. Molecules, 2018, 23, 2888.	1.7	12
28	Isolation of cycloamylose by iodine affinity capillary electrophoresis. Journal of Chromatography A, 2011, 1218, 863-868.	1.8	10
29	Gamma-cyclodextrin on enhancement of water solubility and store stability of nystatin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 145-150.	0.9	10
30	Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168. International Journal of Biological Macromolecules, 2019, 133, 920-928.	3.6	9
31	Photoirradiation surface molecularly imprinted polymers for the separation of 6â€ <i>O</i> â€Î±â€ <scp>d</scp> â€maltosylâ€î²â€cyclodextrin. Journal of Separation Science, 2017, 40, 4653-	466 <mark>0</mark> 3	8
32	Preparation of Photoirradiation Molecular Imprinting Polymer for Selective Separation of Branched Cyclodextrins. Molecules, 2017, 22, 288.	1.7	8
33	Synthesis of polyethylene glycol functional bonded silica gel for selective recognition and separation of α-cyclodextrin. Journal of Chromatography A, 2021, 1639, 461917.	1.8	7
34	A study on the potential interaction between cyclodextrin and lipoxygenase. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 107-111.	1.6	6
35	Cyclodextrin-derived chalcogenides as glutathione peroxidase mimics and their protection of mitochondria against oxidative damage. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 155-163.	1.6	6
36	A Novel Cyclodextrin-Functionalized Hybrid Silicon Wastewater Nano-Adsorbent Material and Its Adsorption Properties. Molecules, 2018, 23, 1485.	1.7	6

JINPENG WANG

#	Article	IF	CITATIONS
37	Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6126-6137.	5.4	6
38	Efficient Synthesis of Glucosyl-β-Cyclodextrin from Maltodextrins by Combined Action of Cyclodextrin Glucosyltransferase and Amyloglucosidase. Journal of Agricultural and Food Chemistry, 2017, 65, 6023-6029.	2.4	5
39	Konjac Glucomannan as a Carrier Material for Time—Temperature Integrator. Food Science and Technology International, 2010, 16, 127-134.	1.1	4
40	Organotellurium-bridged cyclodextrin dimers as artificial glutathione peroxidase models. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 335-341.	1.6	4
41	Extraction optimization, preliminary characterization, and bioactivities of polysaccharides from Silybum marianum meal. Journal of Food Measurement and Characterization, 2019, 13, 1031-1039.	1.6	4
42	Physicochemical properties of rice bran after ball milling. Journal of Food Processing and Preservation, 2021, 45, e15785.	0.9	3
43	Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-α-glucanotransferase. Carbohydrate Polymers, 2015, 122, 329-335.	5.1	1
44	A comparative study of photoresponsive molecularly imprinted polymers with different shell thicknesses: Effects on 6―O â€i±â€maltosylâ€i²â€cyclodextrin separation. Journal of Food Science, 2021, 86, 4060-4069.	1.5	0
45	General Methods for the Preparation of Cyclodextrin Inclusion Complexes. , 2018, , 25-50.		0