Joo Yull Rhee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pressure Effects on the Magnetic Phase Diagram of the CeNMSb2 (NM: Au and Ag): A DFT Study. Materials, 2020, 13, 2237. Magnetic-order-driven metal-insulator transitions in the quasi-one-dimensional spin-ladder	2.9	4
2	compounds <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaFe</mml:mi><m mathvariant="normal">S<mml:mn>3</mml:mn></m </mml:msub></mml:mrow> and <mml:math< td=""><td>ml:mn>2<!--</td--><td>mml:mn></td></td></mml:math<></mml:math 	ml:mn>2 </td <td>mml:mn></td>	mml:mn>
3	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>BaFe</mml:mi><m Broadband and Ultrathin Metamaterial Absorber Fabricated on a Flexible Substrate in the Long-Term Evolution Band. Journal of Electronic Materials, 2019, 48, 7937-7943.</m </mml:msub></mml:mrow>	ml:mn>2 <br 2.2	mml:mn>5
4	High-Density Ordered Arrays of CoPt3 Nanoparticles with Individually Addressable Out-of-Plane Magnetization. ACS Applied Nano Materials, 2019, 2, 975-982.	5.0	2
5	Magnetic ground state of ferromagnetic CeAgSb2. Journal of Magnetism and Magnetic Materials, 2019, 477, 283-286.	2.3	8
6	Central spot formed in dried coffee-water-mixture droplets: Inverse coffee-ring effect. Current Applied Physics, 2018, 18, 477-483.	2.4	9
7	Reversibly-propagational metamaterial absorber for sensing application. Modern Physics Letters B, 2018, 32, 1850044.	1.9	9
8	Ab-initio investigation of electronic structures of $\hat{I}\pm$ -BiFeO3 with different exchange-correlation functionals. AIP Advances, 2018, 8, .	1.3	4
9	Origin of extremely large magnetoresistance in the candidate type-II Weyl semimetal MoTe2â^'x. Scientific Reports, 2018, 8, 13937.	3.3	36
10	Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers. Science and Technology of Advanced Materials, 2018, 19, 711-717.	6.1	22
11	Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency. Scientific Reports, 2018, 8, 11632.	3.3	30
12	Stability of the crystal structure of $\hat{I}\pm$ -BiFeO3. Journal of the Korean Physical Society, 2017, 70, 394-400.	0.7	6
13	Ultrathin microwave metamaterial absorber utilizing embedded resistors. Journal Physics D: Applied Physics, 2017, 50, 405110.	2.8	58
14	Composition-induced influence on the electronic band structure, optical and thermoelectric coefficients of the highly mismatched GaNSb alloy over the entire range: A DFT analysis. Journal of Alloys and Compounds, 2017, 693, 1020-1027.	5.5	38
15	Analysis of a systematic error appearing as a periodic fluctuation in the frequency-domain absorption spectra of metamaterial absorbers. Optics Express, 2017, 25, 13296.	3.4	4
16	<i>A Special Issue on</i> Nanotechnology in Korea 2016-Part 2. Journal of Nanoscience and Nanotechnology, 2017, 17, 7829-7829.	0.9	0
17	<i>A Special Issue on</i> Nanotechnology in Korea 2016-Part 1. Journal of Nanoscience and Nanotechnology, 2017, 17, 7081-7081.	0.9	0
18	Metamaterial perfect absorber using the magnetic resonance of dielectric inclusions. Journal of the Korean Physical Society, 2016, 68, 1008-1013.	0.7	11

JOO YULL RHEE

#	Article	IF	CITATIONS
19	In-plane propagation of electromagnetic waves in planar metamaterials. Journal of the Korean Physical Society, 2016, 69, 448-451.	0.7	2
20	Experimental Realization of Tunable Metamaterial Hyper-transmitter. Scientific Reports, 2016, 6, 33416.	3.3	19
21	Role of Wood's anomaly in the performance of metamaterial absorbers with periodicity comparable to wavelength. Journal Physics D: Applied Physics, 2016, 49, 195103.	2.8	10
22	Peculiar role of f-orbital occupancy in heavy-fermion antiferromagnetic CeNMSb2 (NM: Cu and Au) compounds. Current Applied Physics, 2016, 16, 475-480.	2.4	5
23	<l>A Special Issue on</l> Nanotechnology in Korea 2015-Part 1. Journal of Nanoscience and Nanotechnology, 2016, 16, 10173-10174.	0.9	Ο
24	A Special Issue on Nanotechnology in Korea 2015-Part 2. Journal of Nanoscience and Nanotechnology, 2016, 16, 11131-11132.	0.9	0
25	Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Scientific Reports, 2015, 5, 14018.	3.3	167
26	Strain Sensitivity of Electric-Magnetic Coupling in Flexible Terahertz Metamaterials. Plasmonics, 2015, 10, 1331-1335.	3.4	14
27	Magnetic states of iron-based superconducting compounds: A comparative study with Fe3Al alloy. Journal of the Korean Physical Society, 2015, 66, 646-650.	0.7	3
28	Dual broadband metamaterial absorber. Optics Express, 2015, 23, 3861.	3.4	125
29	Simple metamaterial structure enabling triple-band perfect absorber. Journal Physics D: Applied Physics, 2015, 48, 375103.	2.8	12
30	Multifunctional Antireflection Coatings Based on Novel Hollow Silica–Silica Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 1415-1423.	8.0	115
31	Electronic structures and optical properties of Fe2VAl; effect of hybridization. Journal of the Korean Physical Society, 2013, 63, 1975-1979.	0.7	1
32	Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Optics Express, 2013, 21, 32484.	3.4	84
33	Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Optics Express, 2013, 21, 9691.	3.4	301
34	CLASSICAL ELECTROMAGNETICALLY-INDUCED TRANSPARENCY-LIKE SWITCHING CONTROLLED BY POLARIZATION IN METAMATERIALS. Journal of Nonlinear Optical Physics and Materials, 2013, 22, 1350004.	1.8	2
35	Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry–PA©rot resonance. Journal of Optics (United Kingdom), 2013, 15, 125104.	2.2	22
36	Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Optics Express, 2012, 20, 24002.	3.4	71

JOO YULL RHEE

#	Article	IF	CITATIONS
37	Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling. Journal of Applied Physics, 2012, 111, .	2.5	45
38	Magnetic resonance of a highly symmetric metamaterial at microwave frequency. Physica Status Solidi (B): Basic Research, 2012, 249, 858-861.	1.5	10
39	Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Optics Express, 2011, 19, 21652.	3.4	142
40	Selected Peer-Reviewed Papers from NANO KOREA 2009. Journal of Nanoscience and Nanotechnology, 2011, 11, 224-227.	0.9	0
41	Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance. Optics Communications, 2011, 284, 4766-4768.	2.1	40
42	Peculiar Magnetic Properties of the Half-metallic Co2CrAl Heusler Alloy. Journal of the Korean Physical Society, 2011, 59, 3064-3068.	0.7	9
43	In-plane Interactions in Supercells of Cut-wire Pairs. Journal of the Korean Physical Society, 2011, 58, 87-93.	0.7	0
44	Large Low-energy Oscillator Strength for Eu 4f Electrons of a Rare-earth Zintl Compound: EuIn2P2. Journal of the Korean Physical Society, 2011, 59, 2268-2274.	0.7	1
45	Left-handed transmission in a simple cut-wire pair structure. Journal of Applied Physics, 2010, 107, .	2.5	30
46	Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials. Physical Review B, 2010, 82, .	3.2	27
47	Plasmonic electromagnetically-induced transparency in symmetric structures. Optics Express, 2010, 18, 13396.	3.4	51
48	Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Optics Express, 2010, 18, 20912.	3.4	85
49	Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045004.	1.5	10
50	Electronic Structures and Optical Properties of Spinel ZnCr2O4. Journal of the Korean Physical Society, 2010, 57, 1233-1237.	0.7	26
51	Hybridized Plasmon in an Asymmetric Cut-wire-pair Structure. Journal of the Korean Physical Society, 2010, 57, 1733-1736.	0.7	1
52	5th Nano Korea 2007 symposium. Current Applied Physics, 2009, 9, S1.	2.4	0
53	6th Nano Korea 2008 Symposium. Current Applied Physics, 2009, 9, e1.	2.4	0
54	Direct observation on the temperature-dependent change of magnetic domains in epitaxial MnAs film on GaAs (001). Ultramicroscopy, 2008, 108, 1066-1069.	1.9	1

Joo Yull Rhee

#	Article	IF	CITATIONS
55	Rigorous approach on diffracted magneto-optical effects from polar and longitudinal gyrotropic gratings. Optics Express, 2008, 16, 16825.	3.4	8
56	Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits. Applied Physics Letters, 2008, 93, 061102.	3.3	30
57	Correlation between extraordinary optical transmission and polarization in metallic subwavelength structures. , 2008, , .		Ο
58	Electronic and Magneto-Optical Properties of Rare-Earth Orthoferrites RFeO3 (R = Y, Sm, Eu, Gd and) Tj ETQq0 0	0 rgBT /C	verlock 10 Tf
50	Numerical simulations of 1-D magnetic photonic crystals made of and Bi:YIG. Journal of Magnetism and	ŊQ	1

	Magnetic Materials, 2007, 310, 2699-2701.		
60	Electronic Structures and Magnetic Properties of Ni2MnIn Heusler Alloy. Journal of the Korean Physical Society, 2007, 51, 1578.	0.7	1
61	Metamagnetic behavior ofFe3M(M=AlandSi) alloys at high pressure. Physical Review B, 2004, 70, .	3.2	14
62	Optical properties of correlation-induced paramagnetic FeAl alloy. Journal of Applied Physics, 2004, 96, 7018-7021.	2.5	4
63	Optical, magneto-optical, and magnetic properties of stoichiometric and off-stoichiometricγ′â~phaseNi3Alalloys. Physical Review B, 2003, 68, .	3.2	16
64	Optical and Magneto-Optical Properties of GdFe2. Journal of the Korean Physical Society, 2003, 43, 792-797.	0.7	13
65	Generalized susceptibility of the magnetic shape-memory alloyNi2MnGa. Physical Review B, 2002, 66, .	3.2	107
66	Optical properties ofRNi2B2C(R=Yand Lu). Physical Review B, 2002, 66, .	3.2	1
67	Electronic Structures and Change of the Magnetic and Optical Property due to Structural Disordering of theB2-phase Co–Al Alloys. Japanese Journal of Applied Physics, 2002, 41, 2074-2081.	1.5	4
68	Effects of Structural Disorder on the Transport Properties ofB2-phase Fe0.52Al0.48Alloy Films. Japanese Journal of Applied Physics, 1999, 38, 6401-6404.	1.5	2
69	Optical properties and electronic structures ofB2andB19′phases of equiatomic Ni-Ti alloys. Physical Review B, 1999, 59, 1878-1884.	3.2	12
70	Electronic structures and optical and ground-state properties of near-equiatomic Fe-Al alloys. Journal of Physics Condensed Matter, 1999, 11, 8867-8877.	1.8	2
71	Electronic structures and optical and magneto-optical properties of (R = Y and Lu) intermetallic compounds. Journal of Physics Condensed Matter, 1998, 10, 4307-4314.	1.8	2
79	Ontical properties and electronic structures of Ni3Al alloys, Physical Review B, 1997, 55, 4124-4128	3.2	28

JOO YULL RHEE

#	Article	IF	CITATIONS
73	Optical properties and electronic structures of equiatomicXTiÂ(X=Fe,Co,andNi)alloys. Physical Review B, 1996, 54, 17385-17391.	3.2	24
74	Optical properties of Fe-Rh alloys. Physical Review B, 1995, 51, 1926-1927.	3.2	7
75	Optical properties and electronic structures of \hat{I}_{\pm} - and \hat{I}_{\pm} - Ce. Physical Review B, 1995, 51, 17390-17397.	3.2	7
76	Generalized susceptibility and magnetic ordering in rare-earth nickel boride carbides. Physical Review B, 1995, 51, 15585-15587.	3.2	81
77	Optical properties and electronic structures ofCeSn3andLaSn3. Physical Review B, 1994, 50, 5693-5694.	3.2	7