Joo Yull Rhee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679696/publications.pdf

Version: 2024-02-01

257450 233421 2,105 77 24 45 h-index citations g-index papers 85 85 85 2063 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Optics Express, 2013, 21, 9691.	3.4	301
2	Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Scientific Reports, 2015, 5, 14018.	3.3	167
3	Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Optics Express, 2011, 19, 21652.	3.4	142
4	Dual broadband metamaterial absorber. Optics Express, 2015, 23, 3861.	3.4	125
5	Multifunctional Antireflection Coatings Based on Novel Hollow Silica–Silica Nanocomposites. ACS Applied Materials & Diterfaces, 2014, 6, 1415-1423.	8.0	115
6	Generalized susceptibility of the magnetic shape-memory alloyNi2MnGa. Physical Review B, 2002, 66, .	3.2	107
7	Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Optics Express, 2010, 18, 20912.	3.4	85
8	Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Optics Express, 2013, 21, 32484.	3.4	84
9	Generalized susceptibility and magnetic ordering in rare-earth nickel boride carbides. Physical Review B, 1995, 51, 15585-15587.	3.2	81
10	Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Optics Express, 2012, 20, 24002.	3.4	71
11	Ultrathin microwave metamaterial absorber utilizing embedded resistors. Journal Physics D: Applied Physics, 2017, 50, 405110.	2.8	58
12	Plasmonic electromagnetically-induced transparency in symmetric structures. Optics Express, 2010, 18, 13396.	3.4	51
13	Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling. Journal of Applied Physics, 2012, 111 , .	2.5	45
14	Electronic and Magneto-Optical Properties of Rare-Earth Orthoferrites RFeO3 (R = Y, Sm, Eu, Gd and) Tj ETQq0 0	OrgBT/O	verlock 10 Tf
15	Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance. Optics Communications, 2011, 284, 4766-4768.	2.1	40
16	Composition-induced influence on the electronic band structure, optical and thermoelectric coefficients of the highly mismatched GaNSb alloy over the entire range: A DFT analysis. Journal of Alloys and Compounds, 2017, 693, 1020-1027.	5.5	38
17	Origin of extremely large magnetoresistance in the candidate type-II Weyl semimetal MoTe2â^'x. Scientific Reports, 2018, 8, 13937.	3.3	36
18	Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits. Applied Physics Letters, 2008, 93, 061102.	3.3	30

#	Article	IF	CITATIONS
19	Left-handed transmission in a simple cut-wire pair structure. Journal of Applied Physics, 2010, 107, .	2.5	30
20	Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency. Scientific Reports, 2018, 8, 11632.	3.3	30
21	Optical properties and electronic structures of Ni3Al alloys. Physical Review B, 1997, 55, 4124-4128.	3.2	28
22	Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials. Physical Review B, 2010, 82, .	3.2	27
23	Electronic Structures and Optical Properties of Spinel ZnCr2O4. Journal of the Korean Physical Society, 2010, 57, 1233-1237.	0.7	26
24	Optical properties and electronic structures of equiatomicXTiÂ(X=Fe,Co,andNi)alloys. Physical Review B, 1996, 54, 17385-17391.	3.2	24
25	Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry–P©rot resonance. Journal of Optics (United Kingdom), 2013, 15, 125104.	2.2	22
26	Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers. Science and Technology of Advanced Materials, 2018, 19, 711-717.	6.1	22
27	Experimental Realization of Tunable Metamaterial Hyper-transmitter. Scientific Reports, 2016, 6, 33416.	3.3	19
28	Optical, magneto-optical, and magnetic properties of stoichiometric and off-stoichiometric $\hat{1}^3 \hat{a} \in \hat{2}^3$ phaseNi3Alalloys. Physical Review B, 2003, 68, .	3.2	16
29	Metamagnetic behavior ofFe3M(M=AlandSi) alloys at high pressure. Physical Review B, 2004, 70, .	3.2	14
30	Strain Sensitivity of Electric-Magnetic Coupling in Flexible Terahertz Metamaterials. Plasmonics, 2015, 10, 1331-1335.	3.4	14
31	Optical and Magneto-Optical Properties of GdFe2. Journal of the Korean Physical Society, 2003, 43, 792-797.	0.7	13
32	Optical properties and electronic structures ofB2andB19′phases of equiatomic Ni-Ti alloys. Physical Review B, 1999, 59, 1878-1884.	3.2	12
33	Simple metamaterial structure enabling triple-band perfect absorber. Journal Physics D: Applied Physics, 2015, 48, 375103.	2.8	12
34	Metamaterial perfect absorber using the magnetic resonance of dielectric inclusions. Journal of the Korean Physical Society, 2016, 68, 1008-1013.	0.7	11
35	Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045004.	1.5	10
36	Magnetic resonance of a highly symmetric metamaterial at microwave frequency. Physica Status Solidi (B): Basic Research, 2012, 249, 858-861.	1.5	10

#	Article	IF	Citations
37	Role of Wood's anomaly in the performance of metamaterial absorbers with periodicity comparable to wavelength. Journal Physics D: Applied Physics, 2016, 49, 195103.	2.8	10
38	Central spot formed in dried coffee-water-mixture droplets: Inverse coffee-ring effect. Current Applied Physics, 2018, 18, 477-483.	2.4	9
39	Reversibly-propagational metamaterial absorber for sensing application. Modern Physics Letters B, 2018, 32, 1850044.	1.9	9
40	Peculiar Magnetic Properties of the Half-metallic Co2CrAl Heusler Alloy. Journal of the Korean Physical Society, 2011, 59, 3064-3068.	0.7	9
41	Rigorous approach on diffracted magneto-optical effects from polar and longitudinal gyrotropic gratings. Optics Express, 2008, 16, 16825.	3.4	8
42	Magnetic ground state of ferromagnetic CeAgSb2. Journal of Magnetism and Magnetic Materials, 2019, 477, 283-286.	2.3	8
43	Optical properties and electronic structures of CeSn3 and LaSn3. Physical Review B, 1994, 50, 5693-5694.	3.2	7
44	Optical properties of Fe-Rh alloys. Physical Review B, 1995, 51, 1926-1927.	3.2	7
45	Optical properties and electronic structures of \hat{l}_{\pm} - and \hat{l}_{-} -Ce. Physical Review B, 1995, 51, 17390-17397.	3.2	7
46	Stability of the crystal structure of α-BiFeO3. Journal of the Korean Physical Society, 2017, 70, 394-400.	0.7	6
47	Peculiar role of f-orbital occupancy in heavy-fermion antiferromagnetic CeNMSb2 (NM: Cu and Au) compounds. Current Applied Physics, 2016, 16, 475-480.	2.4	5
48	Broadband and Ultrathin Metamaterial Absorber Fabricated on a Flexible Substrate in the Long-Term Evolution Band. Journal of Electronic Materials, 2019, 48, 7937-7943.	2.2	5
49	compounds <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaFe</mml:mi><mn mathvariant="normal">S<mml:mn>3</mml:mn></mn></mml:msub></mml:mrow></mml:math> <mml:math< td=""><td>nl:mn>2<td>mml:mn></td></td></mml:math<>	nl:mn>2 <td>mml:mn></td>	mml:mn>
50	xmins.mml="http://www.w3.org/1998/Math/Math/MathML"> cmml:mrows.cmml:msub> cmml:mi> BaFe cmm Electronic Structures and Change of the Magnetic and Optical Property due to Structural Disordering of theB2-phase Coâ€"Al Alloys. Japanese Journal of Applied Physics, 2002, 41, 2074-2081.	nl:mn>2 <td>mml:mn></td>	mml:mn>
51	Optical properties of correlation-induced paramagnetic FeAl alloy. Journal of Applied Physics, 2004, 96, 7018-7021.	2.5	4
52	Analysis of a systematic error appearing as a periodic fluctuation in the frequency-domain absorption spectra of metamaterial absorbers. Optics Express, 2017, 25, 13296.	3.4	4
53	Ab-initio investigation of electronic structures of \hat{l}_{\pm} -BiFeO3 with different exchange-correlation functionals. AIP Advances, 2018, 8, .	1.3	4
54	Pressure Effects on the Magnetic Phase Diagram of the CeNMSb2 (NM: Au and Ag): A DFT Study. Materials, 2020, 13, 2237.	2.9	4

#	Article	IF	CITATIONS
55	Magnetic states of iron-based superconducting compounds: A comparative study with Fe3Al alloy. Journal of the Korean Physical Society, 2015, 66, 646-650.	0.7	3
56	Electronic structures and optical and magneto-optical properties of (R = Y and Lu) intermetallic compounds. Journal of Physics Condensed Matter, 1998, 10, 4307-4314.	1.8	2
57	Effects of Structural Disorder on the Transport Properties of B2-phase Fe0.52Al0.48Alloy Films. Japanese Journal of Applied Physics, 1999, 38, 6401-6404.	1.5	2
58	Electronic structures and optical and ground-state properties of near-equiatomic Fe-Al alloys. Journal of Physics Condensed Matter, 1999, 11, 8867-8877.	1.8	2
59	CLASSICAL ELECTROMAGNETICALLY-INDUCED TRANSPARENCY-LIKE SWITCHING CONTROLLED BY POLARIZATION IN METAMATERIALS. Journal of Nonlinear Optical Physics and Materials, 2013, 22, 1350004.	1.8	2
60	In-plane propagation of electromagnetic waves in planar metamaterials. Journal of the Korean Physical Society, 2016, 69, 448-451.	0.7	2
61	High-Density Ordered Arrays of CoPt3 Nanoparticles with Individually Addressable Out-of-Plane Magnetization. ACS Applied Nano Materials, 2019, 2, 975-982.	5.0	2
62	Optical properties of RNi2B2C (R=Yand Lu). Physical Review B, 2002, 66, .	3.2	1
63	Numerical simulations of 1-D magnetic photonic crystals made of and Bi:YIG. Journal of Magnetism and Magnetic Materials, 2007, 310, 2699-2701.	2.3	1
64	Direct observation on the temperature-dependent change of magnetic domains in epitaxial MnAs film on GaAs (001). Ultramicroscopy, 2008, 108, 1066-1069.	1.9	1
65	Electronic structures and optical properties of Fe2VAl; effect of hybridization. Journal of the Korean Physical Society, 2013, 63, 1975-1979.	0.7	1
66	Electronic Structures and Magnetic Properties of Ni2MnIn Heusler Alloy. Journal of the Korean Physical Society, 2007, 51, 1578.	0.7	1
67	Hybridized Plasmon in an Asymmetric Cut-wire-pair Structure. Journal of the Korean Physical Society, 2010, 57, 1733-1736.	0.7	1
68	Large Low-energy Oscillator Strength for Eu 4f Electrons of a Rare-earth Zintl Compound: EuIn2P2. Journal of the Korean Physical Society, 2011, 59, 2268-2274.	0.7	1
69	Correlation between extraordinary optical transmission and polarization in metallic subwavelength structures. , 2008, , .		0
70	5th Nano Korea 2007 symposium. Current Applied Physics, 2009, 9, S1.	2.4	0
71	6th Nano Korea 2008 Symposium. Current Applied Physics, 2009, 9, e1.	2.4	0
72	Selected Peer-Reviewed Papers from NANO KOREA 2009. Journal of Nanoscience and Nanotechnology, 2011, 11, 224-227.	0.9	0

#	Article	IF	CITATIONS
73	<i>A Special Issue on </i> Nanotechnology in Korea 2016-Part 2. Journal of Nanoscience and Nanotechnology, 2017, 17, 7829-7829.	0.9	O
74	<i>A Special Issue on</i> Nanotechnology in Korea 2016-Part 1. Journal of Nanoscience and Nanotechnology, 2017, 17, 7081-7081.	0.9	0
75	In-plane Interactions in Supercells of Cut-wire Pairs. Journal of the Korean Physical Society, 2011, 58, 87-93.	0.7	O
76	<l>A Special Issue on</l> Nanotechnology in Korea 2015-Part 1. Journal of Nanoscience and Nanotechnology, 2016, 16, 10173-10174.	0.9	0
77	A Special Issue on Nanotechnology in Korea 2015-Part 2. Journal of Nanoscience and Nanotechnology, 2016, 16, 11131-11132.	0.9	0