
Cristian Smerdou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines, 2022, 10, 1238.	1.4	3
2	A minimal bile salt excretory pump promoter allows bile acid-driven physiological regulation of transgene expression from a gene therapy vector. Cell and Bioscience, 2022, 12, .	2.1	2
3	Preclinical evaluation of a synthetic peptide vaccine against SARS-CoV-2 inducing multiepitopic and cross-reactive humoral neutralizing and cellular CD4 and CD8 responses. Emerging Microbes and Infections, 2021, 10, 1931-1946.	3.0	11
4	Optimization of a GDNF production method based on Semliki Forest virus vector. European Journal of Pharmaceutical Sciences, 2021, 159, 105726.	1.9	1
5	Adenovirus-Mediated Inducible Expression of a PD-L1 Blocking Antibody in Combination with Macrophage Depletion Improves Survival in a Mouse Model of Peritoneal Carcinomatosis. International Journal of Molecular Sciences, 2021, 22, 4176.	1.8	6
6	Heme oxygenase-1 inducer hemin does not inhibit SARS-CoV-2 virus infection. Biomedicine and Pharmacotherapy, 2021, 137, 111384.	2.5	12
7	A Proteomic Atlas of Lineage and Cancer-Polarized Expression Modules in Myeloid Cells Modeling Immunosuppressive Tumor-Infiltrating Subsets. Journal of Personalized Medicine, 2021, 11, 542.	1.1	6
8	A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies. Microorganisms, 2021, 9, 1956.	1.6	8
9	ldiotype vaccines produced with a non-cytopathic alphavirus self-amplifying RNA vector induce antitumor responses in a murine model of B-cell lymphoma. Scientific Reports, 2021, 11, 21427.	1.6	1
10	A new generation of vaccines based on alphavirus self-amplifying RNA. Current Opinion in Virology, 2020, 44, 145-153.	2.6	45
11	Long-Term Systemic Expression of a Novel PD-1 Blocking Nanobody from an AAV Vector Provides Antitumor Activity without Toxicity. Biomedicines, 2020, 8, 562.	1.4	13
12	Short-Term Local Expression of a PD-L1 Blocking Antibody from a Self-Replicating RNA Vector Induces Potent Antitumor Responses. Molecular Therapy, 2019, 27, 1892-1905.	3.7	28
13	Gene therapy for progressive familial intrahepatic cholestasis type 3 in a clinically relevant mouse model. Nature Communications, 2019, 10, 5694.	5.8	30
14	Intratumoral Immunotherapy with XCL1 and sFlt3L Encoded in Recombinant Semliki Forest Virus–Derived Vectors Fosters Dendritic Cell–Mediated T-cell Cross-Priming. Cancer Research, 2018, 78, 6643-6654.	0.4	60
15	PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Reports, 2017, 20, 1818-1829.	2.9	220
16	Neurotropic alphaviruses can propagate without capsid. Oncotarget, 2017, 8, 8999-9000.	0.8	4
17	A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons. Frontiers in Neuroanatomy, 2016, 10, 27.	0.9	15
18	Capsid-deficient alphaviruses generate propagative infectious microvesicles at the plasma membrane. Cellular and Molecular Life Sciences. 2016. 73. 3897-3916.	2.4	19

CRISTIAN SMERDOU

#	Article	IF	CITATIONS
19	Long noncoding <scp>RNA EGOT</scp> negatively affects the antiviral response and favors <scp>HCV</scp> replication. EMBO Reports, 2016, 17, 1013-1028.	2.0	109
20	Gene therapy approaches against cancer using <i>in vivo</i> and <i>ex vivo</i> gene transfer of interleukin-12. Immunotherapy, 2016, 8, 179-198.	1.0	29
21	Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer, 2015, 15, 620.	1.1	30
22	Virotherapy with a Semliki Forest Virus–Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade. Cancer Immunology Research, 2015, 3, 449-454.	1.6	88
23	Strict Requirement for Vector-Induced Type I Interferon in Efficacious Antitumor Responses to Virally Encoded IL12. Cancer Research, 2015, 75, 497-507.	0.4	34
24	Short-Term Intratumoral Interleukin-12 Expressed from an Alphaviral Vector Is Sufficient to Induce an Efficient Antitumoral Response Against Spontaneous Hepatocellular Carcinomas. Human Gene Therapy, 2014, 25, 132-143.	1.4	15
25	A quick and efficient method to generate mammalian stable cell lines based on a novel inducible alphavirus DNA/RNA layered system. Cellular and Molecular Life Sciences, 2014, 71, 4637-4651.	2.4	6
26	A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a Semliki Forest virus expression system. International Journal of Pharmaceutics, 2013, 440, 19-26.	2.6	9
27	Eradication of Liver-Implanted Tumors by Semliki Forest Virus Expressing IL-12 Requires Efficient Long-Term Immune Responses. Journal of Immunology, 2013, 190, 2994-3004.	0.4	21
28	The immunological profile of tumor-bearing animals determines the outcome of cancer immunotherapy. Oncolmmunology, 2013, 2, e24499.	2.1	4
29	Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncolmmunology, 2012, 1, 1344-1354.	2.1	8
30	A Semliki Forest virus vector engineered to express IFNα induces efficient elimination of established tumors. Gene Therapy, 2012, 19, 271-278.	2.3	19
31	Immunotherapeutic Synergy Between Anti-CD137 mAb and Intratumoral Administration of a Cytopathic Semliki Forest Virus Encoding IL-12. Molecular Therapy, 2012, 20, 1664-1675.	3.7	55
32	Recent Patents on Alphavirus Protein Expression and Vector Production. Recent Patents on Biotechnology, 2011, 5, 212-226.	0.4	5
33	A novel system for the production of high levels of functional human therapeutic proteins in stable cells with a Semliki Forest virus noncytopathic vector. New Biotechnology, 2010, 27, 138-148.	2.4	17
34	Intensive Pharmacological Immunosuppression Allows for Repetitive Liver Gene Transfer With Recombinant Adenovirus in Nonhuman Primates. Molecular Therapy, 2010, 18, 754-765.	3.7	31
35	Alphavirus vectors for cancer therapy. Virus Research, 2010, 153, 179-196.	1.1	59
36	Gene therapy for HCV/HBV-induced hepatocellular carcinoma. Current Opinion in Investigational Drugs, 2010, 11, 1368-77.	2.3	3

CRISTIAN SMERDOU

#	Article	IF	CITATIONS
37	Semliki Forest Virus Expressing Interleukin-12 Induces Antiviral and Antitumoral Responses in Woodchucks with Chronic Viral Hepatitis and Hepatocellular Carcinoma. Journal of Virology, 2009, 83, 12266-12278.	1.5	42
38	Development of a new noncytopathic Semliki Forest virus vector providing high expression levels and stability. Virology, 2008, 376, 242-251.	1.1	23
39	Transcriptomic Effects of Tet-On and Mifepristone-Inducible Systems in Mouse Liver. Human Gene Therapy, 2008, 19, 1233-1248.	1.4	16
40	Biodistribution and Tumor Infectivity of Semliki Forest Virus Vectors in Mice: Effects of Reâ€administration. Molecular Therapy, 2007, 15, 2164-2171.	3.7	19
41	Increased Efficacy and Safety in the Treatment of Experimental Liver Cancer with a Novel Adenovirus-Alphavirus Hybrid Vector. Cancer Research, 2006, 66, 1620-1629.	0.4	30
42	Semliki Forest Virus Vectors Engineered to Express Higher IL-12 Levels Induce Efficient Elimination of Murine Colon Adenocarcinomas. Molecular Therapy, 2005, 12, 153-163.	3.7	72
43	Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 2001, 23, 105-118.	0.7	74
44	Alphavirus vectors: from protein production to gene therapy. Gene Therapy and Regulation, 2000, 1, 33-63.	0.3	8
45	Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine, 1999, 17, 497-507.	1.7	101
46	Replication and Packaging of Transmissible Gastroenteritis Coronavirus-Derived Synthetic Minigenomes. Journal of Virology, 1999, 73, 1535-1545.	1.5	71
47	Enhancing immune responses using suicidal DNA vaccines. Nature Biotechnology, 1998, 16, 562-565.	9.4	225
48	A continuous epitope from transmissible gastroenteritis virus S protein fused to E. coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity. Virus Research, 1996, 41, 1-9.	1.1	21
49	Characterization of transmissible gastroenteritis coronavirus S protein expression products in avirulent S. typhimurium l"cya l"crp: persistence, stability and immune response in swine. Veterinary Microbiology, 1996, 48, 87-100.	0.8	12
50	Molecular Characterization of Transmissible Gastroenteritis Coronavirus Defective Interfering Genomes: Packaging and Heterogeneity. Virology, 1996, 217, 495-507.	1.1	71
51	Induction of Antibodies Protecting against Transmissible Gastroenteritis Coronavirus (TGEV) by Recombinant Adenovirus Expressing TGEV Spike Protein. Virology, 1995, 213, 503-516.	1.1	37
52	Development of Protection against Coronavirus Induced Diseases. Advances in Experimental Medicine and Biology, 1995, 380, 197-211.	0.8	45
53	Structure and Encapsidation of Transmissible Gastroenteritis Coronavirus (TGEV) Defective Interfering Genomes. Advances in Experimental Medicine and Biology, 1995, 380, 583-589.	0.8	2
54	Induction of an Immune Response to Transmissible Gastroenteritis Coronavirus Using Vectors with Enteric Tropism. Advances in Experimental Medicine and Biology, 1994, 342, 455-462.	0.8	0

CRISTIAN SMERDOU

#	Article	IF	CITATIONS
55	Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus. Veterinary Microbiology, 1992, 33, 249-262.	0.8	27
56	Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology, 1991, 183, 225-238.	1.1	134
57	Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology, 1990, 174, 410-417.	1.1	152
58	Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology, 1990, 177, 559-569.	1.1	63