Olga MillÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Therapeutic Drug Monitoring, 2019, 41, 261-307.	1.0	374
2	Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Therapeutic Drug Monitoring, 2021, 43, 150-200.	1.0	89
3	Pharmacodynamic Approach to Immunosuppressive Therapies Using Calcineurin Inhibitors and Mycophenolate Mofetil. Clinical Chemistry, 2003, 49, 1891-1899.	1.5	49
4	Urinary miRâ€155â€5p and CXCL10 as prognostic and predictive biomarkers of rejection, graft outcome and treatment response in kidney transplantation. British Journal of Clinical Pharmacology, 2017, 83, 2636-2650.	1.1	49
5	Is the Intracellular ATP Concentration of CD4+ T-Cells a Predictive Biomarker of Immune Status in Stable Transplant Recipients?. Transplantation, 2009, 88, S78-S84.	0.5	31
6	Monitoring of miR-181a-5p and miR-155-5p Plasmatic Expression as Prognostic Biomarkers for Acute and Subclinical Rejection in de novo Adult Liver Transplant Recipients. Frontiers in Immunology, 2019, 10, 873.	2.2	21
7	High frequency of central memory regulatory T cells allows detection of liver recipients at risk of early acute rejection within the first month after transplantation. International Immunology, 2016, 28, 55-64.	1.8	19
8	Pharmacokinetics and Pharmacodynamics of Low Dose Mycophenolate Mofetil in HIV-Infected Patients Treated with Abacavir, Efavirenz and Nelfinavir. Clinical Pharmacokinetics, 2005, 44, 525-538.	1.6	16
9	Biomarkers of the immunomodulatory effect of immunosuppressive drugs in transplant recipients. Transplantation Reviews, 2009, 23, 120-128.	1.2	15
10	High proportion of CD95+ and CD38+ in cultured CD8+ T cells predicts acute rejection and infection, respectively, in kidney recipients. Transplant Immunology, 2016, 34, 33-41.	0.6	12
11	Pharmacodynamic Monitoring of mTOR Inhibitors. Therapeutic Drug Monitoring, 2019, 41, 160-167.	1.0	10
12	Early prognostic performance of miR155-5p monitoring for the risk of rejection: Logistic regression with a population pharmacokinetic approach in adult kidney transplant patients. PLoS ONE, 2021, 16, e0245880.	1.1	9
13	MicroRNAs 155â€5p, 122â€5p, and 181aâ€5p Identify Patients With Graft Dysfunction Due to T Cell–Mediated Rejection After Liver Transplantation. Liver Transplantation, 2020, 26, 1275-1286.	1.3	8
14	Pharmacokinetics and pharmacogenetics of sorafenib in patients with hepatocellular carcinoma: Implications for combination trials. Liver International, 2020, 40, 2476-2488.	1.9	6
15	Monitoring of gene expression in tacrolimusâ€treated de novo renal allograft recipients facilitates individualized immunosuppression: Results of the IMAGEN study. British Journal of Clinical Pharmacology, 2021, 87, 3851-3862.	1.1	6
16	Advantages of plasmatic CXCL-10 as a prognostic and diagnostic biomarker for the risk of rejection and subclinical rejection in kidney transplantation. Clinical Immunology, 2021, 229, 108792.	1.4	6
17	Nuclear factor of activated T cells as potential pharmacodynamic biomarker for the risk of acute and subclinical rejection in de novo liver recipients. Liver International, 2020, 40, 931-946.	1.9	5
18	Pharmacodynamics of T cell function for monitoring pharmacologic immunosuppression after allogeneic hematopoietic stem cell transplantation. International Journal of Hematology, 2017, 105, 497-505.	0.7	4

#	Article	IF	CITATIONS
19	Getting immunosuppression just right: the role of clinical biomarkers in predicting patient response post solid organ transplantation. Expert Review of Clinical Pharmacology, 2021, 14, 1467-1479.	1.3	2