Jennifer Pratscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679520/publications.pdf

Version: 2024-02-01

23 1,164 16 22 g-index

23 23 23 23 1612

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Ammonia oxidation coupled to CO ₂ fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4170-4175.	7.1	208
2	Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative highâ€affinity [NiFe]â€hydrogenase. Environmental Microbiology, 2010, 12, 821-829.	3.8	131
3	One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME Journal, 2012, 6, 2128-2139.	9.8	127
4	Unravelling the Identity, Metabolic Potential and Global Biogeography of the Atmospheric Methaneâ€Oxidizing Upland Soil Cluster α. Environmental Microbiology, 2018, 20, 1016-1029.	3.8	103
5	Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H ₂ -Oxidizing Bacteria. Applied and Environmental Microbiology, 2011, 77, 6027-6035.	3.1	95
6	Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nature Microbiology, 2019, 4, 1815-1825.	13.3	67
7	Targeted metagenomics of active microbial populations with stable-isotope probing. Current Opinion in Biotechnology, 2016, 41, 1-8.	6.6	58
8	Methanethiol-dependent dimethylsulfide production in soil environments. ISME Journal, 2017, 11, 2379-2390.	9.8	54
9	Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environmental Microbiology, 2017, 19, 2246-2257.	3.8	50
10	Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USC \hat{i} ± clade. Environmental Microbiology, 2011, 13, 2692-2701.	3.8	47
11	Application of Recognition of Individual Genes-Fluorescence In Situ Hybridization (RING-FISH) To Detect Nitrite Reductase Genes (<i>nirK</i>) of Denitrifiers in Pure Cultures and Environmental Samples. Applied and Environmental Microbiology, 2009, 75, 802-810.	3.1	36
12	Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome, 2020, 8, 31.	11.1	35
13	Colonization of rice roots with methanogenic archaea controls photosynthesisâ€derived methane emission. Environmental Microbiology, 2015, 17, 2254-2260.	3.8	29
14	Novel Isoprene-Degrading Proteobacteria From Soil and Leaves Identified by Cultivation and Metagenomics Analysis of Stable Isotope Probing Experiments. Frontiers in Microbiology, 2019, 10, 2700.	3.5	28
15	Methanethiol and Dimethylsulfide Cycling in Stiffkey Saltmarsh. Frontiers in Microbiology, 2019, 10, 1040.	3. 5	23
16	Insights into toxic <i>Prymnesium parvum</i> blooms: the role of sugars and algal viruses. Biochemical Society Transactions, 2018, 46, 413-421.	3.4	16
17	Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning $\hat{a} \in A$ research agenda. Science of the Total Environment, 2021, 759, 143467.	8.0	15
18	Assessing the Toxicity and Mitigating the Impact of Harmful <i>Prymnesium</i> Blooms in Eutrophic Waters of the Norfolk Broads. Environmental Science & Environmental Science	10.0	15

#	Article	lF	CITATIONS
19	Assessment of the use of compost stability as an indicator of alkane and aromatic hydrocarbon degrader abundance in green waste composting materials and finished composts for soil bioremediation application. Waste Management, 2019, 95, 365-369.	7.4	10
20	DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. Science of the Total Environment, 2022, 814, 152742.	8.0	10
21	Draft Genome Sequence of Methylocella silvestris TVC, a Facultative Methanotroph Isolated from Permafrost. Genome Announcements, 2018, 6, .	0.8	6
22	Assembly of Bacterial Genome Sequences from Metagenomes of Spacecraft Assembly Cleanrooms. Microbiology Resource Announcements, 2021, 10 , .	0.6	1
23	Extraction of Microbial Cells from Environmental Samples for FISH Approaches. Methods in Molecular Biology, 2021, 2246, 291-299.	0.9	0