Anna A Stec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679324/publications.pdf

Version: 2024-02-01

136950 197818 2,587 75 32 49 citations h-index g-index papers 79 79 79 2422 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Burning behaviour of rainscreen façades. Journal of Hazardous Materials, 2021, 403, 123894.	12.4	8
2	Smoke toxicity of rainscreen façades. Journal of Hazardous Materials, 2021, 403, 123694.	12.4	7
3	Environmental contamination following the Grenfell Tower fire. Chemosphere, 2019, 226, 576-586.	8.2	31
4	Fire behaviour of modern façade materials – Understanding the Grenfell Tower fire. Journal of Hazardous Materials, 2019, 368, 115-123.	12.4	118
5	Authors' response to comments on "Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate― Chemosphere, 2019, 232, 512-515.	8.2	O
6	Fire Performance of Sandwich Panels in a Modified ISO 13784-1 Small Room Test: The Influence of Increased Fire Load for Different Insulation Materials. Fire Technology, 2018, 54, 819-852.	3.0	13
7	Occupational Exposure to Polycyclic Aromatic Hydrocarbons and Elevated Cancer Incidence in Firefighters. Scientific Reports, 2018, 8, 2476.	3.3	109
8	Stability of Isocyanates Sampled in Fire Smokes. Annals of Work Exposures and Health, 2018, 62, 1171-1175.	1.4	1
9	Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate. Chemosphere, 2018, 196, 429-439.	8.2	42
10	Release of volatile and semi-volatile toxicants during house fires. Chemosphere, 2017, 173, 580-593.	8.2	11
11	Asphyxiant yields from common polymers in under-ventilated fires in the large instrumented fire enclosure (LIFE). Fire Safety Journal, 2017, 91, 982-988.	3.1	5
12	Analysis of fire deaths in Poland and influence of smoke toxicity. Forensic Science International, 2017, 277, 77-87.	2.2	57
13	Fire toxicity – The elephant in the room?. Fire Safety Journal, 2017, 91, 79-90.	3.1	66
14	Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene. Polymer Degradation and Stability, 2017, 136, 139-145.	5.8	43
15	Experimental study on polystyrene with intumescent flame retardants from different scale experiments. Fire and Materials, 2016, 40, 18-26.	2.0	8
16	Quantification of toxic hazard from fires in buildings. Journal of Building Engineering, 2016, 8, 313-318.	3.4	15
17	The role of isocyanates in fire toxicity. Fire Science Reviews, 2016, 5, .	0.9	32
18	A review of exposure and toxicological aspects of carbon nanotubes, and as additives to fire retardants in polymers. Critical Reviews in Toxicology, 2016, 46, 74-95.	3.9	11

#	Article	ΙF	Citations
19	Thermal Decomposition of Polymeric Materials. , 2016, , 167-254.		32
20	Investigation of thermal decomposition of polymer nanocomposites with different char residues. Polymers for Advanced Technologies, 2015, 26, 1027-1033.	3.2	9
21	The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites. Polymer Degradation and Stability, 2015, 115, 38-44.	5.8	47
22	Numerical Simulation of Decomposition of Polymer Nano-composites: Investigation of the Influence of the Char Structure. Energy Procedia, 2015, 66, 165-168.	1.8	3
23	Synthesis of Zinc Phosphonated Poly(ethylene imine) and Its Fire-Retardant Effect in Low-Density Polyethylene. Industrial & Engineering Chemistry Research, 2015, 54, 3247-3256.	3.7	36
24	Self-Assembly Fabrication of Hollow Mesoporous Silica@Co–Al Layered Double Hydroxide@Graphene and Application in Toxic Effluents Elimination. ACS Applied Materials & Diterfaces, 2015, 7, 8506-8514.	8.0	48
25	Generation, Sampling and Quantification of Toxic Combustion Products. Issues in Toxicology, 2015, , 108-138.	0.1	0
26	Influence of Fire Retardants and Nanofillers on Fire Toxicity. , 2014, , 837-867.		1
27	Flame retardant polystyrene copolymers: preparation, thermal properties, and fire toxicities. Polymers for Advanced Technologies, 2014, 25, 631-637.	3.2	29
28	Detailed study of distribution patterns of polycyclic aromatic hydrocarbons and isocyanates under different fire conditions. Fire and Materials, 2014, 38, 125-144.	2.0	16
29	Classification and identification of soot source with principal component analysis and back-propagation neural network. Australian Journal of Forensic Sciences, 2014, 46, 224-233.	1.2	15
30	Combustion and <scp>T</scp> oxic <scp>G</scp> as <scp>P</scp> roduction from <scp>D</scp> isposable <scp>B</scp> arbecues in <scp>E</scp> nclosures. Journal of Forensic Sciences, 2014, 59, 127-138.	1.6	3
31	Study of the fire resistant behavior of unfilled and carbon nanofibers reinforced polybenzimidazole coating for structural applications. Polymers for Advanced Technologies, 2014, 25, 29-35.	3.2	13
32	Experimental Results of a Residential House Fire Test on Tenability: Temperature, Smoke, and Gas Analyses. Journal of Forensic Sciences, 2014, 59, 139-154.	1.6	24
33	Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Composites Part A: Applied Science and Manufacturing, 2014, 64, 203-210.	7.6	91
34	Effect of Functionalized Graphene Oxide with Hyper-Branched Flame Retardant on Flammability and Thermal Stability of Cross-Linked Polyethylene. Industrial & Engineering Chemistry Research, 2014, 53, 3073-3083.	3.7	64
35	Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14076-14086.	8.0	143
36	Fabrication of Ce-doped MnO ₂ decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism. Journal of Materials Chemistry A, 2014, 2, 17341-17351.	10.3	78

#	Article	IF	CITATIONS
37	Effect of Functionalized Graphene Oxide with Hyper-Branched Flame Retardant on Flammability and Thermal Stability of Cross-Linked Polyethylene. Industrial & Engineering Chemistry Research, 2014, 53, 5622-5622.	3.7	4
38	Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Materials Research Bulletin, 2014, 49, 657-664.	5.2	82
39	The effect of gas phase flame retardants on fire effluent toxicity. Polymer Degradation and Stability, 2014, 106, 36-46.	5.8	54
40	The correlation between carbon monoxide and hydrogen cyanide in fire effluents of flame retarded polymers. Fire Safety Science, $2014, 11, 389-403$.	0.3	5
41	Fire Toxicity Assessment: Comparison of Asphyxiant Yields from Laboratory and Large Scale Flaming Fires. Fire Safety Science, 2014, 11, 404-418.	0.3	21
42	Repeatability and reproducibility of the ISO/TS 19700 steady state tube furnace. Fire Safety Journal, 2013, 55, 22-34.	3.1	22
43	Analysis of toxic effluents released from PVC carpet under different fire conditions. Chemosphere, 2013, 90, 65-71.	8.2	18
44	Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Materials Chemistry and Physics, 2013, 142, 531-538.	4.0	59
45	Nebulization of ultradeformable liposomes: The influence of aerosolization mechanism and formulation excipients. International Journal of Pharmaceutics, 2012, 436, 519-526.	5.2	40
46	Flammability properties of PEEK and carbon nanotube composites. Polymer Degradation and Stability, 2012, 97, 2492-2502.	5.8	39
47	The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polymer Degradation and Stability, 2012, 97, 2231-2240.	5.8	53
48	Smoke and hydrocarbon yields from fire retarded polymer nanocomposites. Polymer Degradation and Stability, 2011, 96, 295-300.	5.8	23
49	Influence of physical properties on polymer flammability in the cone calorimeter. Polymers for Advanced Technologies, 2011, 22, 1100-1107.	3.2	47
50	Assessment of the fire toxicity of building insulation materials. Energy and Buildings, 2011, 43, 498-506.	6.7	177
51	Quantification of fire gases by FTIR: Experimental characterisation of calibration systems. Fire Safety Journal, 2011, 46, 225-233.	3.1	34
52	Characterisation of soot particulates from fire retarded and nanocomposite materials, and their toxicological impact. Polymer Degradation and Stability, 2011, 96, 277-284.	5.8	35
53	Carbon Monoxide Generation in Fires: Effect of Temperature on Halogenated and Aromatic Fuels. Fire Safety Science, 2011, 10, 253-263.	0.3	9
54	Bench Scale Generation of Smoke Particulates and Hydrocarbons from Burning Polymers. Fire Safety Science, 2011, 10, 629-639.	0.3	3

#	Article	IF	Citations
55	Estimation of toxicity during burning of common materials. , 2010, , 541-558.		2
56	Fire scenarios and combustion conditions. , 2010, , 26-47.		8
57	Effects of the material and fire conditions on toxic product yields. , 2010, , 515-540.		7
58	Experimental methods in combustion toxicology. , 2010, , 217-228.		3
59	Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polymer Degradation and Stability, 2010, 95, 1269-1274.	5.8	78
60	Introduction to fire toxicity., 2010,, 3-25.		12
61	An international standardised framework for prediction of fire gas toxicity., 2010, , 583-603.		0
62	Comparison of toxic product yields from bench-scale to ISO room. Fire Safety Journal, 2009, 44, 62-70.	3.1	33
63	Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality. Nanoscale Research Letters, 2009, 4, 303-306.	5.7	21
64	Preparation and characterisation of a novel fire retardant PET/ \hat{l} ±-zirconium phosphate nanocomposite. Polymer Degradation and Stability, 2009, 94, 544-549.	5.8	99
65	Effects of Fire Retardants and Nanofillers on the Fire Toxicity. ACS Symposium Series, 2009, , 342-366.	0.5	7
66	Fire-Retardant Mechanism of Acrylonitrile Copolymers Containing Nanoclay. ACS Symposium Series, 2009, , 118-147.	0.5	0
67	Fire Retardant Effects of Polymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 4478-4486.	0.9	28
68	Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polymer Degradation and Stability, 2008, 93, 1024-1030.	5.8	87
69	The effect of temperature and ventilation condition on the toxic product yields from burning polymers. Fire and Materials, 2008, 32, 49-60.	2.0	68
70	Characterisation of the steady state tube furnace (ISO TS 19700) for fire toxicity assessment. Polymer Degradation and Stability, 2008, 93, 2058-2065.	5.8	48
71	Fire smoke toxicity: The effect of nitrogen oxides. Fire Safety Journal, 2008, 43, 243-251.	3.1	37
72	A Comparison of Toxic Product Yields Obtained From Five Laboratories Using the Steady State Tube Furnace (ISO TS 19700). Fire Safety Science, 2008, 9, 653-664.	0.3	10

Anna A Stec

#	Article	IF	CITATION
73	Hydrogen Chloride in Fires. Fire Safety Science, 2008, 9, 665-676.	0.3	22
74	Factors affecting the combustion toxicity of polymeric materials. Polymer Degradation and Stability, 2007, 92, 2239-2246.	5.8	60
7 5	Chapter 25. Assessment of Fire Toxicity from Polymer Nanocomposites. , 0, , 405-417.		2