
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679212/publications.pdf Version: 2024-02-01

LILES D MELLEDINK

#	Article	IF	CITATIONS
1	Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies. Nature Communications, 2022, 13, 1048.	5.8	12
2	High Prevalence of Constitutional Mismatch Repair Deficiency in a Pediatric T-cell Lymphoblastic Lymphoma Cohort. HemaSphere, 2022, 6, e668.	1.2	3
3	JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia, 2022, 36, 1499-1507.	3.3	6
4	MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight, 2022, 7, .	2.3	7
5	T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discovery, 2021, 2, 19-31.	2.6	61
6	A Tumor Suppressor Enhancer of <i>PTEN</i> in T-cell Development and Leukemia. Blood Cancer Discovery, 2021, 2, 92-109.	2.6	15
7	<i>BCL11B</i> , the Cerberus of human leukemia. Blood, 2021, 138, 741-743.	0.6	2
8	MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia, 2021, 35, 3394-3405.	3.3	28
9	Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood, 2021, 138, 1040-1052.	0.6	28
10	BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood, 2021, 138, 2383-2395.	0.6	13
11	Infant Tâ€cell acute lymphoblastic leukaemia with t(6;7) (<i>TCRBâ€MYB</i>) translocation. British Journal of Haematology, 2021, 194, 613-616.	1.2	2
12	Recurrent NR3C1 Aberrations at First Diagnosis Relate to Steroid Resistance in Pediatric T-Cell Acute Lymphoblastic Leukemia Patients. HemaSphere, 2021, 5, e513.	1.2	9
13	T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor?. Blood Advances, 2020, 4, 3466-3473.	2.5	31
14	A Molecular Test for Quantifying Functional Notch Signaling Pathway Activity in Human Cancer. Cancers, 2020, 12, 3142.	1.7	17
15	Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nature Cancer, 2020, 1, 1113-1127.	5.7	32
16	Phospho-Proteomic Profiling of T-Cell Acute Lymphoblastic Leukemia Identifies Targetable Kinase Activities and Novel Treatment Combination Strategies. Blood, 2020, 136, 14-15.	0.6	1
17	The Central Role of MAPK-ERK Signaling in IL7-Dependent and IL7-Independent Steroid Resistance Reveals a Broad Application of MEK-Inhibitors Compared to JAK1/2-Inhibition in T-ALL. Blood, 2020, 136, 20-20.	0.6	1
18	The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL. Leukemia, 2019, 33, 319-332.	3.3	50

#	Article	IF	CITATIONS
19	Pre-clinical evaluation of second generation PIM inhibitors for the treatment of T-cell acute lymphoblastic leukemia and lymphoma. Haematologica, 2019, 104, e17-e20.	1.7	18
20	Genetic characterization and therapeutic targeting of <i>MYC</i> â€rearranged T cell acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 185, 169-174.	1.2	9
21	Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Advances in Biological Regulation, 2019, 74, 100647.	1.4	14
22	GATA3-Controlled Nucleosome Eviction Drives <i>MYC</i> Enhancer Activity in T-cell Development and Leukemia. Cancer Discovery, 2019, 9, 1774-1791.	7.7	27
23	A Test to Quantify NOTCH Pathway Activity in T Cell Acute Lymphoblastic Leukemia Patients. Blood, 2019, 134, 4661-4661.	0.6	1
24	The Clinical and Functional Relevance of the Transforming AKT E17K Mutation in T-ALL. Blood, 2019, 134, 3804-3804.	0.6	0
25	Phospho-Proteomic Profiling of T-Cell Acute Lymphoblastic Leukemia Identifies Specific Kinase Activation Signatures That Can Predict Response to Targeted Therapy. Blood, 2019, 134, 4649-4649.	0.6	0
26	MAPK-ERK Pathway Activation: The Achilles' Heel of IL-7R‒Induced Steroid Resistance. Blood, 2019, 134, 1292-1292.	0.6	0
27	HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discovery, 2018, 8, 616-631.	7.7	76
28	The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling. Leukemia, 2018, 32, 809-819.	3.3	57
29	Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. Cancer Discovery, 2018, 8, 1614-1631.	7.7	30
30	Cooperative Enhancer Activation by TLX1 and STAT5 Drives Development of NUP214-ABL1/TLX1-Positive T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 34, 271-285.e7.	7.7	48
31	Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia, 2017, 31, 2048-2056.	3.3	47
32	MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia. Science Signaling, 2017, 10, .	1.6	15
33	Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway. Leukemia, 2017, 31, 1314-1324.	3.3	29
34	Loss of CD44dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus. Frontiers in Immunology, 2017, 8, 32.	2.2	53
35	Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines. Oncotarget, 2017, 8, 38309-38325.	0.8	25
36	Abstract 3457: Stable aneuploid cells are more sensitive to TTK inhibition than chromosome instable cell lines. , 2017, , .		0

3

#	Article	IF	CITATIONS
37	Abstract 509: Genomic profiling of acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link betweenATMmutations and chromothripsis. , 2017, , .		0
38	HOXA-activated early T-cell progenitor acute lymphoblastic leukemia: predictor of poor outcome?. Haematologica, 2016, 101, 654-656.	1.7	6
39	Lentiviral gene transfer into human and murine hematopoietic stem cells: size matters. BMC Research Notes, 2016, 9, 312.	0.6	43
40	Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway that can be targeted for therapy. European Journal of Cancer, 2016, 69, S113.	1.3	0
41	MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia, 2016, 30, 1832-1843.	3.3	78
42	Discovery and functional characterization of a germline, CSF2RB-activating mutation in leukemia. Leukemia, 2016, 30, 1950-1953.	3.3	19
43	The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica, 2016, 101, 1010-1017.	1.7	56
44	Structural modeling of JAK1 mutations in T-cell acute lymphoblastic leukemia reveals a second contact site between pseudokinase and kinase domains. Haematologica, 2016, 101, e189-e191.	1.7	9
45	Overexpression of LMO2 causes aberrant human T-Cell development inÂvivo by three potentially distinct cellular mechanisms. Experimental Hematology, 2016, 44, 838-849.e9.	0.2	10
46	IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Medicine, 2016, 13, e1002200.	3.9	89
47	Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE, 2016, 11, e0155408.	1.1	17
48	Abstract B21: Genetic characterization and therapeutic targeting of MYC translocated pediatric T-cell acute lymphoblastic leukemia. Cancer Research, 2016, 76, B21-B21.	0.4	0
49	ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nature Communications, 2015, 6, 5794.	5.8	75
50	CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene, 2015, 34, 2978-2990.	2.6	56
51	T-Cell Acute Lymphoblastic Leukemia Patients with Mutations in IL7Ra or Downstream RAS-MEK or PI3K-AKT Can be Collectively Targeted By Combination of RAS and AKT Inhibitors. Blood, 2015, 126, 445-445.	0.6	5
52	3D Modeling of Novel Transforming JAK Mutations in T-Cell Acute Lymphoblastic Leukemia Reveals Altered Pseudokinase-Kinase Domain Interactions That Result in Constitutive JAK Kinase Activity. Blood, 2015, 126, 869-869.	0.6	1
53	Identification of Candidate Oncogenes and Chromosomal Breakpoint Sequencing By Targeted Locus Amplification in T-Cell Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1409-1409.	0.6	0
54	Angiopoietin-Like Protein 3 Promotes Preservation of Stemness during Ex Vivo Expansion of Murine Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e105642.	1.1	24

#	Article	IF	CITATIONS
55	PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood, 2014, 124, 567-578.	0.6	68
56	Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors. Haematologica, 2014, 99, 94-102.	1.7	84
57	Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene, 2014, 33, 403-410.	2.6	80
58	ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood, 2014, 124, 3738-3747.	0.6	198
59	JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood, 2014, 124, 3092-3100.	0.6	128
60	Abstract A19: Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines. , 2014, , .		0
61	Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines. Cellular Oncology (Dordrecht), 2013, 36, 351-362.	2.1	11
62	Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia. Cancer Cell, 2013, 24, 766-776.	7.7	220
63	Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration. Gene, 2013, 521, 62-68.	1.0	8
64	Inactivation of the <i>Cdkn2a</i> locus cooperates with <i>HMGA1</i> to drive T-cell leukemogenesis. Leukemia and Lymphoma, 2013, 54, 1762-1768.	0.6	22
65	Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica, 2013, 98, 1173-1184.	1.7	31
66	The Nuclear Effector of Wnt-Signaling, Tcf1, Functions as a T-Cell–Specific Tumor Suppressor for Development of Lymphomas. PLoS Biology, 2012, 10, e1001430.	2.6	67
67	Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia, 2012, 26, 2204-2211.	3.3	91
68	A Novel and Fast Normalization Method for High-Density Arrays. Statistical Applications in Genetics and Molecular Biology, 2012, 11, .	0.2	2
69	Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements. Haematologica, 2012, 97, 258-261.	1.7	29
70	The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica, 2012, 97, 1405-1413.	1.7	110
71	High frequency of copy number alterations in myeloid leukaemia of <scp>D</scp> own syndrome. British Journal of Haematology, 2012, 158, 800-803.	1.2	10
72	High Anaplastic Lymphoma Kinase Immunohistochemical Staining in Neuroblastoma and Ganglioneuroblastoma Is an Independent Predictor of Poor Outcome. American Journal of Pathology, 2012, 180, 1223-1231.	1.9	60

#	Article	IF	CITATIONS
73	NKL homeobox genes in leukemia. Leukemia, 2012, 26, 572-581.	3.3	36
74	Huvariome: a web server resource of whole genome next-generation sequencing allelic frequencies to aid in pathological candidate gene selection. Journal of Clinical Bioinformatics, 2012, 2, 19.	1.2	20
75	Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nature Medicine, 2012, 18, 436-440.	15.2	138
76	Correct interpretation of Tâ€ALL oncogene expression relies on normal human thymocyte subsets as reference material. British Journal of Haematology, 2012, 157, 142-146.	1.2	1
77	Abstract 2490: HighAXLpromotes migration in non-MYCNamplified neuroblastoma cell lines. , 2012, , .		Ο
78	Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nature Genetics, 2011, 43, 932-939.	9.4	374
79	In vitro efficacy of forodesine and nelarabine (ara-G) in pediatric leukemia. Blood, 2011, 118, 2184-2190.	0.6	41
80	Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2011, 19, 484-497.	7.7	322
81	PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood, 2011, 117, 7090-7098.	0.6	76
82	Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels. Cellular Oncology (Dordrecht), 2011, 34, 409-417.	2.1	24
83	Late Recurrence of Childhood T-Cell Acute Lymphoblastic Leukemia Frequently Represents a Second Leukemia Rather Than a Relapse: First Evidence for Genetic Predisposition. Journal of Clinical Oncology, 2011, 29, 1643-1649.	0.8	62
84	Abstract 4347: Anaplastic lymphoma kinase (ALK) expression is an independent prognostic factor in neuroblastoma patients and correlates well with ALK inhibitor response in vitro. , 2011, , .		0
85	Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica, 2010, 95, 1675-1682.	1.7	88
86	PHF6 mutations in T-cell acute lymphoblastic leukemia. Nature Genetics, 2010, 42, 338-342.	9.4	282
87	Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nature Genetics, 2010, 42, 530-535.	9.4	162
88	The TLX1 oncogene drives aneuploidy in T cell transformation. Nature Medicine, 2010, 16, 1321-1327.	15.2	139
89	NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia, 2010, 24, 2014-2022.	3.3	127
90	Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Practice and Research in Clinical Haematology, 2010, 23, 307-318.	0.7	91

#	Article	IF	CITATIONS
91	Abstract 148: Development of a DNA methylation array normalization method for analyzing demethylating treatment effects in paired samples. , 2010, , .		0
92	MEF2C as Novel Oncogene for Early T-Cell Precursor (ETP) Leukemia. Blood, 2010, 116, 9-9.	0.6	5
93	BCL11B Mutations In T-Cell Acute Lymphoblastic Leukemia. Blood, 2010, 116, 471-471.	0.6	0
94	Identification of a Novel T-ALL Entity with NKX2-1/NKX2-2 Rearrangements. Blood, 2010, 116, 3139-3139.	0.6	0
95	Discovery of Subtype-Specific Mirnas and New MiR-Genes In Pediatric Acute Lymphoblastic Leukemia. Blood, 2010, 116, 3232-3232.	0.6	1
96	PTEN/AKT Pathway Mutations Are Reciprocal to NOTCH-Activating Mutations In Pediatric T-Cell Acute Lymphoblastic Lymphoma (T-ALL). Blood, 2010, 116, 1710-1710.	0.6	0
97	γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nature Medicine, 2009, 15, 50-58.	15.2	417
98	High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nature Methods, 2009, 6, 837-842.	9.0	86
99	Backtracking of ALL to cord blood. Leukemia Research, 2009, 33, e107-e108.	0.4	2
100	New Genetic Abnormalities and Treatment Response in Acute Lymphoblastic Leukemia. Seminars in Hematology, 2009, 46, 16-23.	1.8	57
101	WT1 mutations in T-ALL. Blood, 2009, 114, 1038-1045.	0.6	111
102	Oncogenic Transcriptional Programs Controlled by TLX1/HOX11 and TLX3/HOX11L2 in T-ALL Blood, 2009, 114, 676-676.	0.6	0
103	CD34 expression is associated with poor survival in pediatric Tâ€cell acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2008, 51, 737-740.	0.8	22
104	Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia, 2008, 22, 124-131.	3.3	130
105	Monoallelic or biallelic LMO2 expression in relation to the LMO2 rearrangement status in pediatric T-cell acute lymphoblastic leukemia. Leukemia, 2008, 22, 1434-1437.	3.3	17
106	Cooperative genetic defects in TLX3 rearranged pediatric T-ALL. Leukemia, 2008, 22, 762-770.	3.3	32
107	Molecularâ€genetic insights in paediatric Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2008, 143, 153-168.	1.2	136
108	The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood, 2008, 111, 4668-4680.	0.6	198

#	Article	IF	CITATIONS
109	Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood, 2008, 111, 4322-4328.	0.6	118
110	NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood, 2008, 112, 733-740.	0.6	116
111	Increased expression of p73î"ex2 transcript in uveal melanoma with loss of chromosome 1p. Melanoma Research, 2008, 18, 208-213.	0.6	11
112	<i>FBW7</i> mutations in leukemic cells mediate NOTCH pathway activation and resistance to Î ³ -secretase inhibitors. Journal of Experimental Medicine, 2007, 204, 1813-1824.	4.2	605
113	Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood, 2007, 109, 3929-3935.	0.6	82
114	Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nature Genetics, 2007, 39, 593-595.	9.4	252
115	Inhibition of NOTCH1 Signaling Reverses Glucocorticoid Resistance in T-ALL Blood, 2007, 110, 151-151.	0.6	4
116	A Novel Class of Activating Mutations in NOTCH1 in T-ALL Blood, 2007, 110, 694-694.	0.6	5
117	Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection. Gastroenterology, 2006, 131, 117-129.	0.6	1,297
118	The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood, 2006, 108, 3520-3529.	0.6	156
119	Up-regulation of asparagine synthetase expression is not linked to the clinical response l-asparaginase in pediatric acute lymphoblastic leukemia. Blood, 2006, 107, 4244-4249.	0.6	67
120	Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood, 2006, 108, 1045-1049.	0.6	61
121	Repeats in the kringle IV encoding domains in the Apo(a) gene and serum lipoprotein(a) level do not contribute to the risk for avascular necrosis of the bone (AVN) in pediatric acute lymphoblastic leukemia. Leukemia, 2006, 20, 879-880.	3.3	3
122	A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia, 2006, 20, 1245-1253.	3.3	44
123	Differential expression of p73 isoforms in relation to drug resistance in childhood T-lineage acute lymphoblastic leukaemia. Leukemia, 2006, 20, 1377-1384.	3.3	19
124	High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression ofHLXB9. Genes Chromosomes and Cancer, 2006, 45, 731-739.	1.5	91
125	The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica, 2006, 91, 1212-21.	1.7	75
126	Activating FLT3 mutations in CD4+/CD8- pediatric T-cell acute lymphoblastic leukemias. Blood, 2005, 106, 4414-4415.	0.6	43

#	Article	IF	CITATIONS
127	mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia, 2005, 19, 727-733.	3.3	34
128	Novel murine B-cell lymphoma/leukemia model to study BCL2-driven oncogenesis. International Journal of Cancer, 2005, 114, 917-925.	2.3	22
129	Genetic Variations in the Glucocorticoid Receptor Gene Are Not Related to Glucocorticoid Resistance in Childhood Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2005, 11, 6050-6056.	3.2	75
130	The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. British Journal of Cancer, 2005, 93, 1388-1394.	2.9	136
131	Expression Levels of TEL, AML1, and the Fusion Products TEL-AML1 and AML1-TEL versus Drug Sensitivity and Clinical Outcome in t(12;21)-Positive Pediatric Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2005, 11, 2974-2980.	3.2	19
132	High Incidence of t(7;12)(q36;p13) with Involvement of HLXB9 in Infant AML Blood, 2005, 106, 2364-2364.	0.6	1
133	Expression of the glucocorticoid receptor and its isoforms in relation to glucocorticoid resistance in childhood acute lymphocytic leukemia. Haematologica, 2005, 90, 1279-81.	1.7	32
134	Dynamics of circulating t(14;18)-positive cells during first-line and subsequent lines of treatment in follicular lymphoma. Annals of Hematology, 2003, 82, 743-749.	0.8	11
135	Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapsed after allogeneic stem cell transplantation. Bone Marrow Transplantation, 2003, 32, 1159-1163.	1.3	91
136	Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia, 2003, 17, 17-25.	3.3	143
137	Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood, 2003, 101, 2743-2747.	0.6	135
138	Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood, 2003, 101, 1270-1276.	0.6	179
139	Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia, 2002, 16, 833-839.	3.3	154
140	Bcl-2 protects against apoptosis induced by antimycin A and bongkrekic acid without restoring cellular ATP levels. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1554, 57-65.	0.5	25
141	Quantification of newly developed T cells in mice by real-time quantitative PCR of T-cell receptor rearrangement excision circles. Experimental Hematology, 2002, 30, 745-750.	0.2	36
142	A Method to Compensate for Different Amplification Efficiencies. Journal of Molecular Diagnostics, 2001, 3, 189-190.	1.2	3
143	A Novel Method to Compensate for Different Amplification Efficiencies between Patient DNA Samples in Quantitative Real-Time PCR. Journal of Molecular Diagnostics, 2001, 3, 55-61.	1.2	264
144	Lack of correlation between numbers of circulating t(14;18)-positive cells and response to first-line treatment in follicular lymphoma. Blood, 2001, 98, 940-944.	0.6	61

#	Article	IF	CITATIONS
145	Frequent allelic imbalance but infrequent microsatellite instability in gastric lymphoma. Leukemia, 1999, 13, 1804-1811.	3.3	15
146	Graft-versus-lymphoma effect of donor leucocyte infusion shown by real-time quantitative PCR analysis of t(14;18). Lancet, The, 1998, 352, 1522-1523.	6.3	76
147	t(14;18), a journey to eternity. Leukemia, 1997, 11, 2175-2187.	3.3	32
148	New type of t(14; 18) in a non-Hodgkin's lymphoma provides insight in molecular events in early B-cell differentiation. British Journal of Haematology, 1995, 91, 630-639.	1.2	22
149	Quantitative analysis of DNA aberrations amplified by competitive polymerase chain reaction using capillary electrophoresis. Biomedical Applications, 1994, 660, 271-277.	1.7	25
150	A novel HLAâ€ÐPB1 allele (DPB1*4501) in a Dutch caucasian healthy control. Tissue Antigens, 1993, 41, 255-258.	1.0	8
151	Quantitation of follicular non-Hodgkin's lymphoma cells carrying t(14;18) by competitive polymerase chain reaction. British Journal of Haematology, 1993, 84, 250-256.	1.2	28
152	PCR detection of a Bg/ll polymorphism in intron I of the human p53 gene (TP53). Nucleic Acids Research, 1992, 20, 1172-1172.	6.5	9
153	Cytotoxic potential of anti-CD7 immunotoxin (WT1-ricin A) to purge ex vivo malignant T cells in bone marrow. British Journal of Haematology, 1989, 71, 195-201.	1.2	11