
Samantha A Brugmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nature Medicine, 2017, 23, 49-59.	30.7	465
2	Wnt signaling mediates regional specification in the vertebrate face. Development (Cambridge), 2007, 134, 3283-3295.	2.5	188
3	A primary cilia-dependent etiology for midline facial disorders. Human Molecular Genetics, 2010, 19, 1577-1592.	2.9	143
4	Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis, 2011, 49, 784-796.	1.6	82
5	The emerging face of primary cilia. Genesis, 2011, 49, 231-246.	1.6	70
6	Sending mixed signals: Cilia-dependent signaling during development and disease. Developmental Biology, 2019, 447, 28-41.	2.0	64
7	Craniofacial ciliopathies: A new classification for craniofacial disorders. American Journal of Medical Genetics, Part A, 2010, 152A, 2995-3006.	1.2	61
8	The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant <i>talpid2</i> . Development (Cambridge), 2014, 141, 3003-3012.	2.5	45
9	Cilia-dependent GLI processing in neural crest cells is required for tongue development. Developmental Biology, 2017, 424, 124-137.	2.0	42
10	Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genetics, 2016, 12, e1006351.	3.5	42
11	Utilizing the chicken as an animal model for human craniofacial ciliopathies. Developmental Biology, 2016, 415, 326-337.	2.0	36
12	The Molecular Origins of Species‧pecific Facial Pattern. Current Topics in Developmental Biology, 2006, 73, 1-42.	2.2	35
13	A mutation in FRIZZLED2 impairs Wnt signaling and causes autosomal dominant omodysplasia. Human Molecular Genetics, 2015, 24, 3399-3409.	2.9	30
14	Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling. Clinical Cancer Research, 2016, 22, 2062-2073.	7.0	30
15	Discovery, Diagnosis, and Etiology of Craniofacial Ciliopathies. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028258.	5.5	28
16	The Ciliary Baton. Current Topics in Developmental Biology, 2015, 111, 97-134.	2.2	27
17	A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS ONE, 2017, 12, e0174206.	2.5	27
18	Using the avian mutant <i>talpid2</i> as a disease model for understanding the oral-facial phenotypes of Oral-facial-digital syndrome. DMM Disease Models and Mechanisms, 2015, 8, 855-66.	2.4	25

Samantha A Brugmann

#	Article	IF	CITATIONS
19	Unique spatiotemporal requirements for intraflagellar transport genes during forebrain development. PLoS ONE, 2017, 12, e0173258.	2.5	24
20	RDH10-mediated retinol metabolism and RARα-mediated retinoic acid signaling are required for submandibular salivary gland initiation. Development (Cambridge), 2018, 145, .	2.5	21
21	A novel role for ciliaâ€dependent sonic hedgehog signaling during submandibular gland development. Developmental Dynamics, 2018, 247, 818-831.	1.8	15
22	Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks. ELife, 2020, 9, .	6.0	15
23	Neural crest cells utilize primary cilia to regulate ventral forebrain morphogenesis via Hedgehog-dependent regulation of oriented cell division. Developmental Biology, 2017, 431, 168-178.	2.0	8
24	Understanding Mechanisms of GLI-Mediated Transcription during Craniofacial Development and Disease Using the Ciliopathic Mutant, talpid2. Frontiers in Physiology, 2016, 7, 468.	2.8	6
25	Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development (Cambridge), 2021, 148, .	2.5	6
26	Atavisms in the avian hindlimb and early developmental polarity of the limb. Developmental Dynamics, 2021, 250, 1358-1367.	1.8	4
27	Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos. Journal of Developmental Biology, 2021, 9, 12.	1.7	4
28	GLIâ€dependent Etiology of Craniofacial Ciliopathies. FASEB Journal, 2015, 29, 86.2.	0.5	2
29	Centriolar Protein C2cd3 Is Required for Craniofacial Development. Frontiers in Cell and Developmental Biology, 2021, 9, 647391.	3.7	1
30	Pharmacological intervention of the FGF–PTH axis as a potential therapeutic for craniofacial ciliopathies. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	1
31	Craniofacial Syndromes. , 2015, , 653-676.		0
32	Characterization of the avian Talpid2 mutant. FASEB Journal, 2013, 27, 967.5.	0.5	0
33	Hand2 Functions to Synergistically Activate Gli Target Genes in Mandibular Neural Crest Cells. FASEB Journal, 2019, 33, 73.1.	0.5	0
34	The Society for Craniofacial Genetics and Developmental Biology 44th Annual Meeting. American Journal of Medical Genetics, Part A, 2022, , .	1.2	0